コンテンツへ移動
Frontiers in quantitative finance : volatility and credit risk modeling 資料のプレビュー
閉じる資料のプレビュー
確認中…

Frontiers in quantitative finance : volatility and credit risk modeling

著者: Rama Cont
出版: Hoboken, N.J. : John Wiley & Sons, ©2009.
シリーズ: Wiley finance series.
エディション/フォーマット:   書籍 : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
The Petit Déjeuner de la Finance - which Rama Cont has been co-organizing in Paris since 1998 - is a well-known quantitative finance seminar that has progressively become a platform for the exchange of ideas between the academic and practitioner communities in quantitative finance. This seminar has included a prestigious list of international speakers who are considered major contributors to recent developments in  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

ジャンル/形式: Aufsatzsammlung
資料の種類: インターネット資料
ドキュメントの種類: 図書, インターネットリソース
すべての著者/寄与者: Rama Cont
ISBN: 047029292X 9780470292921
OCLC No.: 230181884
物理形態: xvii, 299 p. : ill. ; 24 cm.
コンテンツ: I. Option Pricing And Volatility Modeling. 1. A Moment Approach To Static Arbitrage (Alexandre d' Aspremont).1.1 Introduction. 1.2 No Arbitrage Conditions. 1.3 Example. 1.4 Conclusion. 2. On Black-Scholes Implied Volatility At Extreme Strikes (Shalom Benaim, Peter Friz and Roger Lee).2.1 Introduction. 2.2 The Moment Formula. 2.3 Regular Variation and the Tail-Wing Formula. 2.4 Related Results. 2.5 Applications. 2.6 CEV and SABR. 3. Dynamic Properties Of Smile Models (Lorenzo Bergomi).3.1 Introduction. 3.2 Some standard smile models. 3.3 A new class of models for smile dynamics. 3.4 Pricing examples. 3.5 Conclusion. 4. A Geometric Approach To The Asymptotics Of Implied Volatility (Pierre Henry-Labord'Ere).4.1 Volatility Asymptotics in Stochastic Volatility Models. 4.2 Heat Kernel Expansion. 4.3 Geometry of Complex Curves and Asymptotic Volatility. 4.4 --SABR model and hyperbolic geometry. 4.5 SABR model with --
= 0, 1.4.6 Conclusions and future work. 4.7 Appendix A: Notions in differential geometry. 4.8 Appendix B: Laplace integrals in many dimensions. 5. Pricing, Hedging And Calibration In Jump-Diffusion Models (Peter Tankov And Ekaterina Voltchkova).5.1 Overview of jump-diffusion models. 5.2 Pricing European options via Fourier transform. 5.3 Integro-differential equations. 5.4 Hedging the jump risk. 5.5 Model calibration. II. Credit Risk. 6. Modelling Credit Risk (L.C.G. Rogers).6.1 What is the problem?6.2 Hazard rate models. 6.3 Structural models. 6.4 Some nice ideas. 6.5 Summary. 6.6 Epilogue. 7. An Overview Of Factor Modeling For CDO Pricing (Jean-Paul Laurent And Areski Cousin).7.1 Pricing of portfolio credit derivatives. 7.2 Factor models for pricing of CDO tranches. 7.3 A review of factor approaches to the pricing of CDOs. 7.4 Conclusion. 8. Factor Distributions Implied by Quoted CDO Spreads (Erik Schl ogl and Lutz Schl ogl).8.1 Introduction. 8.2 Modelling. 8.3 Examples. 8.4 Conclusion. 9. Pricing Cdos With A Smile: The Local Correlation Model (Julien Turc And Philippe Very).9.1 The local correlation model. 9.2 Simplification under the large pool assumption. 9.3 Building the local correlation function without the large pool Assumption. 9.4 Pricing and hedging with local correlation. 10. Portfolio Credit Risk: Top Down Vs Bottom Up Approaches (Kay Giesecke).10.1 Introduction. 10.2 Portfolio credit models. 10.3 Information and specification. 10.4 Default distribution. 10.5 Calibration. 10.6 Conclusion. 11. Forward Equations For Portfolio Credit Derivatives (Rama Cont And Ioana Savescu).11.1 Portfolio credit derivatives. 11.2 Top-down models for CDO pricing. 11.3 Effective default intensity. 11.4 A forward equation for CDO pricing. 11.5 Recovering forward default intensities from tranche spreads. 11.6 Conclusion.
シリーズタイトル: Wiley finance series.
責任者: Rama Cont, editor.
その他の情報:

概要:

The Petit D'euner de la Finance-which author Rama Cont has been co-organizing in Paris since 1998-is a well-known quantitative finance seminar that has progressively become a platform for the  続きを読む

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

すべてのユーザーのタグ (3)

人気のタグを表示: タグリスト | タグクラウド

リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/230181884>
library:oclcnum"230181884"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/230181884>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/891026>
rdf:typeschema:Intangible
schema:name"Volatilität"@en
schema:name"Derivative securities--Mathematical models"@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/924398>
rdf:typeschema:Intangible
schema:name"Finance--Mathematical models."@en
schema:name"Finance--Mathematical models"@en
schema:about
schema:contributor
schema:copyrightYear"2009"
schema:datePublished"2009"
schema:description"The Petit Déjeuner de la Finance - which Rama Cont has been co-organizing in Paris since 1998 - is a well-known quantitative finance seminar that has progressively become a platform for the exchange of ideas between the academic and practitioner communities in quantitative finance. This seminar has included a prestigious list of international speakers who are considered major contributors to recent developments in quantitative finance. Frontiers in Quantitative Finance is a selection of recent presentations in the Petit Déjeuner de la Finance. Leading quants and academic researchers cover the most important emerging issues in quantitative finance and focus on portfolio credit risk and volatility modeling."@en
schema:description"I. Option Pricing And Volatility Modeling. 1. A Moment Approach To Static Arbitrage (Alexandre d' Aspremont).1.1 Introduction. 1.2 No Arbitrage Conditions. 1.3 Example. 1.4 Conclusion. 2. On Black-Scholes Implied Volatility At Extreme Strikes (Shalom Benaim, Peter Friz and Roger Lee).2.1 Introduction. 2.2 The Moment Formula. 2.3 Regular Variation and the Tail-Wing Formula. 2.4 Related Results. 2.5 Applications. 2.6 CEV and SABR. 3. Dynamic Properties Of Smile Models (Lorenzo Bergomi).3.1 Introduction. 3.2 Some standard smile models. 3.3 A new class of models for smile dynamics. 3.4 Pricing examples. 3.5 Conclusion. 4. A Geometric Approach To The Asymptotics Of Implied Volatility (Pierre Henry-Labord'Ere).4.1 Volatility Asymptotics in Stochastic Volatility Models. 4.2 Heat Kernel Expansion. 4.3 Geometry of Complex Curves and Asymptotic Volatility. 4.4 --SABR model and hyperbolic geometry. 4.5 SABR model with -- = 0, 1.4.6 Conclusions and future work. 4.7 Appendix A: Notions in differential geometry. 4.8 Appendix B: Laplace integrals in many dimensions. 5. Pricing, Hedging And Calibration In Jump-Diffusion Models (Peter Tankov And Ekaterina Voltchkova).5.1 Overview of jump-diffusion models. 5.2 Pricing European options via Fourier transform. 5.3 Integro-differential equations. 5.4 Hedging the jump risk. 5.5 Model calibration. II. Credit Risk. 6. Modelling Credit Risk (L.C.G. Rogers).6.1 What is the problem?6.2 Hazard rate models. 6.3 Structural models. 6.4 Some nice ideas. 6.5 Summary. 6.6 Epilogue. 7. An Overview Of Factor Modeling For CDO Pricing (Jean-Paul Laurent And Areski Cousin).7.1 Pricing of portfolio credit derivatives. 7.2 Factor models for pricing of CDO tranches. 7.3 A review of factor approaches to the pricing of CDOs. 7.4 Conclusion. 8. Factor Distributions Implied by Quoted CDO Spreads (Erik Schl ogl and Lutz Schl ogl).8.1 Introduction. 8.2 Modelling. 8.3 Examples. 8.4 Conclusion. 9. Pricing Cdos With A Smile: The Local Correlation Model (Julien Turc And Philippe Very).9.1 The local correlation model. 9.2 Simplification under the large pool assumption. 9.3 Building the local correlation function without the large pool Assumption. 9.4 Pricing and hedging with local correlation. 10. Portfolio Credit Risk: Top Down Vs Bottom Up Approaches (Kay Giesecke).10.1 Introduction. 10.2 Portfolio credit models. 10.3 Information and specification. 10.4 Default distribution. 10.5 Calibration. 10.6 Conclusion. 11. Forward Equations For Portfolio Credit Derivatives (Rama Cont And Ioana Savescu).11.1 Portfolio credit derivatives. 11.2 Top-down models for CDO pricing. 11.3 Effective default intensity. 11.4 A forward equation for CDO pricing. 11.5 Recovering forward default intensities from tranche spreads. 11.6 Conclusion."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1079976260>
schema:genre"Aufsatzsammlung."@en
schema:inLanguage"en"
schema:name"Frontiers in quantitative finance : volatility and credit risk modeling"@en
schema:numberOfPages"299"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.