컨텐츠로 이동
Fundamental statistics for the behavioral sciences 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Fundamental statistics for the behavioral sciences

저자: David C Howell
출판사: Belmont, CA : Thomson/Wadsworth, ©2008.
판/형식:   Print book : 영어 : 6th ed모든 판과 형식 보기
데이터베이스:WorldCat
요약:

Focuses on the context of statistics in behavioral research, with an emphasis on looking before leaping; investigating the data before jumping into a test. This book provides you with an  더 읽기…

평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

문서 형식:
모든 저자 / 참여자: David C Howell
ISBN: 0495099007 9780495099000 0495099015 9780495099017
OCLC 번호: 141187817
설명: xiv, 594 p. : ill. (some col.) ; 24 cm.
내용: 1. Introduction. The importance of Context. Basic Terminology. Selection among Statistical Procedures. Using Computers. Summary. Exercises. 2. Basic Concepts. Scales of Measurement. Variables. Random Sampling. Notation. Summary. Exercises. 3. Displaying Data. Plotting Data. Stem-and-Leaf Displays. Histograms. Reading Graphs. Alternative Methods of Plotting Data. Describing Distributions. Using Computer Programs to Display Data. Summary. Exercises. 4. Measures of Central Tendency. The Mode. The Median. The Mean. Relative Advantages of the Mode, the Median, and the Mean. Obtaining Measures of Central Tendency Using SPSS. A Simple Demonstration-Seeing Statistics. Summary. Exercises. 5. Measures of Variability. Range. Interquartile Range and Other Range Statistics. The Average Deviation. The Variance. The Standard Deviation. Computational Formulae for the Variance and the Standard eviation. The Mean and the Variance as Estimators. Boxplots: Graphical Representations of Dispersion and Extreme Scores. A Return to Trimming. Obtaining Measures of Dispersion Using SPSS. A Final Worked Example. Seeing Statistics. Summary. Exercises. 6. The Normal Distribution. The Normal Distribution. The Standard Normal Distribution. Setting Probable Limits on an Observations. Measures Related to z. Seeing Statistics. Summary. Exercises. 7. Basic Concepts of Probability. Probability. Basic Terminology and Rules. The Application of Probability to Controversial Issues. Writing Up the Results. Discrete versus Continuous Variables. Probability Distributions for Discrete Variables. Probability Distributions for Continuous Variables. Summary. Exercises. 8. Sampling Distributions and Hypothesis Testing. Two Simple Examples Involving Course Evaluations and Rude Motorists. Sampling Distributions. Hypothesis Testing. The Null Hypothesis. Test Statistics and Their Sampling Distributions. Using the Normal Distribution to Test Hypotheses. Type I and Type II Errors. One- and Two-Tailed Tests. Seeing Statistics. A Final Worked Example. Back to Course Evaluations and Rude Motorists. Summary. Exercises. 9. Correlation. Scatter Diagrams. The Relationship Between Pace of Life and Heart Disease. The Covariance. The Pearson Product-Moment Correlation Coefficient (r). Correlations with Ranked Data. Factors that Affect the Correlation. Beware Extreme Observations. Correlation and Causation. If Something Looks Too Good to Be True, Perhaps It Is. Testing the Significance of a Correlation Coefficient. Intercorrelation Matrices. Other Correlation Coefficients. Using SPSS to Obtain Correlation Coefficients. Seeing Statistics. A Final Worked Example. Summary . Exercises. 10. Regression. The Relationship Between Stress and Health. The Basic Data. The Regression Line. The Accuracy of Prediction. The Influence of Extreme Values. Hypothesis Testing in Regression. Computer Solutions using SPSS. Seeing Statistics. Summary. Exercises. 11. Multiple Regression. Overview. A Different Data Set. Residuals. The Visual Representation of Multiple Regression. Hypothesis Testing. Refining the Regression Equation. A Second Example: Height and Weight. A Third Example: Psychological Symptoms in Cancer Patients. Summary. Exercises. 12. Hypothesis Testing Applied to Means: One Sample. Sampling Distribution of the Mean. Testing Hypotheses about Means When a is Known. Testing a Sample Mean When a is Unknown (The One-Sample t). Factors that Affect the Magnitude of t and the Decision about H0. A Second Example: The Moon Illusion. How Large is Our Effect?. Confidence Limits on the Mean. Using SPSS to Run One-Sample t tests. A Final Worked Example. Seeing Statistics. Summary. Exercises. 13. Hypothesis Tests Applied to Means: Two Related Samples. Related Samples. Student's t Applied to Difference Scores. A Second Example: The Moon Illusion Again. Advantages and Disadvantages of Using Related Samples. How Large an Effect Have We Found?. Confidence Limits on Changes. Using SPSS for t Tests on Related Samples. Writing Up the Results. Summary. Exercises. 14. Hypothesis Tests Applied to Means: Two Independent Samples. Distribution of Differences Between Means. Heterogeneity of Variance. Nonnormality of Distributions. A Second Example with Two Independent Samples. Effect Sizes Again. Confidence Limits on Y1 V Y2. Writing Up the Results. Use of Computer Programs for Analysis of Two Independent Sample Means. A Final Worked Example. Seeing Statistics. Summary. Exercises. 15. Power. The Basic Concept. Factors that Affect the Power of a Test. Effect Size. Power Calculations for the One-Sample t Test. Power Calculations for Differences Between Two Independent Means. Power Calculations for the t Test for Related Samples. Power Considerations in Terms of Sample Size. You Don't Have to Do It by Hand. Seeing Statistics. Summary. Exercises. 16. One-Way Analysis of Variance. The General Approach. The Logic of the Analysis of Variance. Calculations for the Analysis of Variances. Unequal Sample Sizes. Multiple Comparison Procedures. Violations of Assumptions. The Size of the Effects. Writing Up the Results. The Use of SPSS for a One-Way Analysis of Variance. A Final Worked Example. Seeing Statistics. Summary. Exercises. 17. Factorial Analysis of Variance Factorial Designs. The Extension of the Eysenck Study. Interactions. Simple Effects. Measures of Association and Effect Size. Reporting the Results. Unequal Sample Sizes. A Second Example: Maternal Adaptation Revisited. Using SPSS for Factorial Analysis of Variance. Seeing Statistics. Summary. Exercises. 18. Repeated-Measures Analysis of Variance. An Example: Depression as a Response to an Earthquake. Multiple Comparisons. Effect Size. Assumptions involved in Repeated-Measures Designs. Advantages and Disadvantages of Repeated-Measures Designs. Using SPSS to Analyze Data in a Repeated-Measures Design. Writing Up the Results. A Final Worked Example. Summary. Exercises. 19. Chi-Square. One Classification Variable: The Chi-Square Goodness of Fit Test. Two Classification Variables: Analysis of Contingency Tables. Possible Improvements on Standard Chi-Square. Chi-Square for Larger Contingency Tables. The Problem of Small Expected Frequencies. The Use of Chi-Square as a Test of Proportions. Nonindependent Observations. SPSS Analysis of Contingency Tables. Measures of Effect Size. A Final Worked Example. Writing Up the Results. Seeing Statistics. Summary. Exercises. 20. Nonparametric and Distribution-Free Statistical Tests. The Mann-Whitney Test. Wilcoxon's Matched-Pairs Signed-Ranks Test. Kruskal-Wallis One-Way Analysis of Variance. Friedman's Rank Test for k Correlated Samples. Measures of Effect Size. Writing Up the Results. Summary. Exercises. 21. Choosing the Appropriate Analysis. Exercises and Examples. Appendix A Arithmetic Review. Appendix B Symbols and Notation. Appendix C Basic Statistical Formulae. Appendix D Dataset. Appendix E Statistical Tables. Glossary. References. Answers to Selected Exercises. Index. Index.
책임: David C. Howell.

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

모든 사용자 태그 (2)

가장 인기있는 태그 보기 태그 리스트 | tag cloud

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/141187817>
library:oclcnum"141187817"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:bookEdition"6th ed."
schema:copyrightYear"2008"
schema:creator
schema:datePublished"2008"
schema:exampleOfWork<http://worldcat.org/entity/work/id/713463>
schema:inLanguage"en"
schema:name"Fundamental statistics for the behavioral sciences"@en
schema:numberOfPages"594"
schema:publication
schema:publisher
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.