skip to content
Genetic Algorithms for Pattern Recognition Preview this item
ClosePreview this item
Checking...

Genetic Algorithms for Pattern Recognition

Author: Sankar K Pal; Paul P Wang
Publisher: Boca Raton, FL : CRC Press, 2017.
Series: CRC Press Revivals
Edition/Format:   eBook : Document : English : First editionView all editions and formats
Summary:
"Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Sankar K Pal; Paul P Wang
ISBN: 9780203713402 0203713400 9781351364492 1351364499 9781351364485 1351364480
OCLC Number: 1014359346
Description: 1 online resource : text file, PDF.
Contents: Cover; Title Page; Copyright Page; Dedication; Contents; Preface; Editors; Contributors; 1 Fitness Evaluation in Genetic Algorithms with Ancestorsâ#x80;#x99; Influence; 1.1 Introduction; 1.2 Genetic Algorithms: Basic Principles and Features; 1.3 A New Fitness Evaluation Criterion; 1.3.1 Selection of Weighting Coefficients (α, β, γ); 1.3.2 The Schema Theorem and the Influence of Parents on the Offspring; 1.4 Implementation; 1.4.1 Selection of Genetic Parameters; 1.4.2 Various Schemes; 1.5 Analysis of Results; 1.6 Conclusions; 2 The Walsh Transform and the Theory of the Simple Genetic Algorithm. 2.1 Introduction2.2 Random Heuristic Search; 2.2.1 Notation; 2.2.2 Selection; 2.2.3 Mutation; 2.2.4 Crossover; 2.2.5 The Heuristic Function of the Simple Genetic Algorithm; 2.3 The Walsh Transform; 2.4 The Walsh Basis; 2.5 Invariance; 2.6 The Inverse GA; 2.7 Recombination Limits; 2.8 Conclusion; 3 Adaptation in Genetic Algorithms; 3.1 Introduction; 3.2 Exploitation vs. Exploration in Genetic Algorithms; 3.3 Why Adapt Control Parameters?; 3.4 Adaptive Probabilities of Crossover and Mutation; 3.4.1 Motivations; 3.4.2 Design of Adaptive p[sub(c)] and p[sub(m)]. 3.4.3 Practical Considerations and Choice of Values for k[sub(1)], k[sub(2)], and k[sub(3)]3.5 Experiments and Results; 3.5.1 Performance Measures; 3.5.2 Functions for Optimization; 3.5.3 Experimental Results; 3.5.4 When Does the AGA Perform Well?; 3.5.5 Sensitivity of AGA to k[sub(1)] and k[sub(2)]; 3.6 Conclusions; 4 An Empirical Evaluation of Genetic Algorithms on Noisy Objective Functions; 4.1 Introduction; 4.2 Background; 4.3 Empirical Benchmarks; 4.3.1 Algorithm Descriptions; 4.4 Performance Comparisons Using Noisy Fitness Values to Approximate Optimality. 4.4.1 Empirical Results and Analysis4.5 Performance Comparisons Using True Fitness Values in Noisy Optimization Environments; 4.5.1 Empirical Results and Analysis; 4.6 Discussion of Empirical Tests; 4.7 An Application: Geophysical Static Corrections; 4.7.1 Problem Description; 4.7.2 Algorithm Descriptions; 4.7.3 Empirical Results and Analysis; 4.8 Conclusions; 5 Generalization of Heuristics Learned in Genetics-Based Learning; 5.1 Introduction; 5.1.1 Generation of Heuristics; 5.1.2 Testing of Heuristics and Evaluating Their Performance. 5.1.3 Generalization of Heuristics Learned to Unlearned Domains5.2 Performance Evaluation and Anomalies; 5.2.1 Example Applications; 5.2.2 Problem Subspace and Subdomain; 5.2.3 Anomalies in Performance Evaluation; 5.3 Generalization of Heuristic Methods Learned; 5.3.1 Probability of Win within a Subdomain; 5.3.2 Probability of Win across Subdomains; 5.3.3 Generalization Procedure; 5.4 Experimental Results; 5.4.1 Heuristics for Sequential Circuit Testing; 5.4.2 Heuristics for VLSI Placement and Routing; 5.4.3 Branch-and-Bound Search; 5.5 Conclusions.
Series Title: CRC Press Revivals
Responsibility: editors, Wang, Paul P.

Abstract:

"Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers."--Provided by publisher.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(7)

User lists with this item (4)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1014359346> # Genetic Algorithms for Pattern Recognition
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "1014359346" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/flu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/computers_general> ; # COMPUTERS--General
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/pattern_perception> ; # Pattern perception
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/genetischer_algorithmus> ; # Genetischer Algorithmus
    schema:about <http://dewey.info/class/006.4/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/mustererkennung> ; # Mustererkennung
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/machine_learning> ; # Machine learning
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/genetic_algorithms> ; # Genetic algorithms
    schema:about <http://experiment.worldcat.org/entity/work/data/364640906#Topic/algorithmus> ; # Algorithmus
    schema:author <http://experiment.worldcat.org/entity/work/data/364640906#Person/wang_paul_p> ; # Paul P. Wang
    schema:author <http://experiment.worldcat.org/entity/work/data/364640906#Person/pal_sankar_k> ; # Sankar K. Pal
    schema:bookEdition "First edition." ;
    schema:bookFormat schema:EBook ;
    schema:datePublished "2017" ;
    schema:description "Cover; Title Page; Copyright Page; Dedication; Contents; Preface; Editors; Contributors; 1 Fitness Evaluation in Genetic Algorithms with Ancestorsâ#x80;#x99; Influence; 1.1 Introduction; 1.2 Genetic Algorithms: Basic Principles and Features; 1.3 A New Fitness Evaluation Criterion; 1.3.1 Selection of Weighting Coefficients (α, β, γ); 1.3.2 The Schema Theorem and the Influence of Parents on the Offspring; 1.4 Implementation; 1.4.1 Selection of Genetic Parameters; 1.4.2 Various Schemes; 1.5 Analysis of Results; 1.6 Conclusions; 2 The Walsh Transform and the Theory of the Simple Genetic Algorithm."@en ;
    schema:description ""Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers."--Provided by publisher."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/364640906> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/364640906#Series/crc_press_revivals> ; # CRC Press Revivals
    schema:isSimilarTo <http://worldcat.org/entity/work/data/364640906#CreativeWork/> ;
    schema:name "Genetic Algorithms for Pattern Recognition"@en ;
    schema:productID "1014359346" ;
    schema:url <https://www.taylorfrancis.com/books/9781351364492> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1683959> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=5211831> ;
    schema:workExample <http://worldcat.org/isbn/9781351364492> ;
    schema:workExample <http://worldcat.org/isbn/9781351364485> ;
    schema:workExample <http://worldcat.org/isbn/9780203713402> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1014359346> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/364640906#Person/pal_sankar_k> # Sankar K. Pal
    a schema:Person ;
    schema:familyName "Pal" ;
    schema:givenName "Sankar K." ;
    schema:name "Sankar K. Pal" ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Person/wang_paul_p> # Paul P. Wang
    a schema:Person ;
    schema:familyName "Wang" ;
    schema:givenName "Paul P." ;
    schema:name "Paul P. Wang" ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Series/crc_press_revivals> # CRC Press Revivals
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1014359346> ; # Genetic Algorithms for Pattern Recognition
    schema:name "CRC Press Revivals" ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Topic/computers_general> # COMPUTERS--General
    a schema:Intangible ;
    schema:name "COMPUTERS--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Topic/genetic_algorithms> # Genetic algorithms
    a schema:Intangible ;
    schema:name "Genetic algorithms"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Topic/genetischer_algorithmus> # Genetischer Algorithmus
    a schema:Intangible ;
    schema:name "Genetischer Algorithmus"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364640906#Topic/pattern_perception> # Pattern perception
    a schema:Intangible ;
    schema:name "Pattern perception"@en ;
    .

<http://worldcat.org/isbn/9780203713402>
    a schema:ProductModel ;
    schema:isbn "0203713400" ;
    schema:isbn "9780203713402" ;
    .

<http://worldcat.org/isbn/9781351364485>
    a schema:ProductModel ;
    schema:isbn "1351364480" ;
    schema:isbn "9781351364485" ;
    .

<http://worldcat.org/isbn/9781351364492>
    a schema:ProductModel ;
    schema:isbn "1351364499" ;
    schema:isbn "9781351364492" ;
    .

<https://www.taylorfrancis.com/books/9781351364492>
    rdfs:comment "Distributed by publisher. Purchase or institutional license may be required for access." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.