omitir hasta el contenido
Geometric algorithms and combinatorial optimization Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Geometric algorithms and combinatorial optimization

Autor: Martin Grötschel; László Lovász; A Schrijver
Editorial: Berlin ; New York : Springer-Verlag, ©1988.
Serie: Algorithms and combinatorics, 2.
Edición/Formato:   Print book : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Formato físico adicional: Online version:
Grötschel, Martin.
Geometric algorithms and combinatorial optimization.
Berlin ; New York : Springer-Verlag, ©1988
(OCoLC)625123472
Tipo de material: Recurso en Internet
Tipo de documento: Libro/Texto, Recurso en Internet
Todos autores / colaboradores: Martin Grötschel; László Lovász; A Schrijver
ISBN: 038713624X 9780387136240 354013624X 9783540136248
Número OCLC: 17299859
Notas: Includes indexes.
Descripción: xii, 362 pages : illustrations ; 25 cm.
Contenido: Mathematical preliminaries --
Complexity, oracles, and numerical computation --
Algorithmic aspects of convex sets: formulation of the problems --
The ellipsoid method --
Algorithms for convex bodies --
Diophantine approximation and basis reduction --
Rational polyhedra --
Combinatorial optimization: some basic examples --
Combinatorial optimization: a tour d'horizon --
Stable sets in graphs --
Submodular functions.
Título de la serie: Algorithms and combinatorics, 2.
Responsabilidad: Martin Grötschel, László Lovász, Alexander Schrijver.
Más información:

Resumen:

Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/17299859> # Geometric algorithms and combinatorial optimization
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "17299859" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/2642368#Place/berlin> ; # Berlin
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/calcul_complexe> ; # calcul complexe
    schema:about <http://id.worldcat.org/fast/1012099> ; # Mathematical optimization
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_combinatoire> ; # Géométrie combinatoire
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/combinatieleer> ; # Combinatieleer
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_des_nombres> ; # Géométrie des nombres
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/algoritmen> ; # Algoritmen
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/mathematique_informatique> ; # mathématique informatique
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_nombre> ; # géométrie nombre
    schema:about <http://id.worldcat.org/fast/868972> ; # Combinatorial geometry
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/programmation_mathematiques> ; # Programmation (Mathématiques)
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/polynomialzeitalgorithmus> ; # Polynomialzeitalgorithmus
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/kombinatorische_optimierung> ; # Kombinatorische Optimierung
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/optimisation_mathematique> ; # Optimisation mathématique
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/optimisation_combinatoire> ; # optimisation combinatoire
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/ensemble_convexe> ; # ensemble convexe
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/optimaliseren> ; # Optimaliseren
    schema:about <http://id.worldcat.org/fast/1078701> ; # Programming (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_algorithmique> ; # Géométrie algorithmique
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/algorithme_geometrique> ; # algorithme géométrique
    schema:about <http://dewey.info/class/511.6/e19/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrische_aspecten> ; # Geometrische aspecten
    schema:about <http://id.worldcat.org/fast/940899> ; # Geometry of numbers
    schema:about <http://experiment.worldcat.org/entity/work/data/2642368#Topic/polyedrische_kombinatorik> ; # Polyedrische Kombinatorik
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/2642368#Person/schrijver_a> ; # A. Schrijver
    schema:contributor <http://experiment.worldcat.org/entity/work/data/2642368#Person/lovasz_laszlo_1948> ; # László Lovász
    schema:copyrightYear "1988" ;
    schema:creator <http://viaf.org/viaf/109556056> ; # Martin Grötschel
    schema:datePublished "1988" ;
    schema:description "Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs."@en ;
    schema:description "Mathematical preliminaries -- Complexity, oracles, and numerical computation -- Algorithmic aspects of convex sets: formulation of the problems -- The ellipsoid method -- Algorithms for convex bodies -- Diophantine approximation and basis reduction -- Rational polyhedra -- Combinatorial optimization: some basic examples -- Combinatorial optimization: a tour d'horizon -- Stable sets in graphs -- Submodular functions."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2642368> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2642368#Series/algorithms_and_combinatorics> ; # Algorithms and combinatorics ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/625123472> ;
    schema:name "Geometric algorithms and combinatorial optimization"@en ;
    schema:productID "17299859" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/17299859#PublicationEvent/berlin_new_york_springer_verlag_1988> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/2642368#Agent/springer_verlag> ; # Springer-Verlag
    schema:url <http://www.gbv.de/dms/hbz/toc/ht003058487.pdf> ;
    schema:url <http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2358998&custom%5Fatt%5F2=simple%5Fviewer> ;
    schema:workExample <http://worldcat.org/isbn/9783540136248> ;
    schema:workExample <http://worldcat.org/isbn/9780387136240> ;
    umbel:isLike <http://d-nb.info/871516535> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/17299859> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
    schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Person/lovasz_laszlo_1948> # László Lovász
    a schema:Person ;
    schema:birthDate "1948" ;
    schema:familyName "Lovász" ;
    schema:givenName "László" ;
    schema:name "László Lovász" ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Person/schrijver_a> # A. Schrijver
    a schema:Person ;
    schema:familyName "Schrijver" ;
    schema:givenName "A." ;
    schema:name "A. Schrijver" ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Series/algorithms_and_combinatorics> # Algorithms and combinatorics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/17299859> ; # Geometric algorithms and combinatorial optimization
    schema:name "Algorithms and combinatorics ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/algorithme_geometrique> # algorithme géométrique
    a schema:Intangible ;
    schema:name "algorithme géométrique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/ensemble_convexe> # ensemble convexe
    a schema:Intangible ;
    schema:name "ensemble convexe"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_algorithmique> # Géométrie algorithmique
    a schema:Intangible ;
    schema:name "Géométrie algorithmique"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_combinatoire> # Géométrie combinatoire
    a schema:Intangible ;
    schema:name "Géométrie combinatoire"@en ;
    schema:name "Géométrie combinatoire"@fr ;
    schema:name "géométrie combinatoire"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_des_nombres> # Géométrie des nombres
    a schema:Intangible ;
    schema:name "Géométrie des nombres"@en ;
    schema:name "Géométrie des nombres"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrie_nombre> # géométrie nombre
    a schema:Intangible ;
    schema:name "géométrie nombre"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/geometrische_aspecten> # Geometrische aspecten
    a schema:Intangible ;
    schema:name "Geometrische aspecten"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/kombinatorische_optimierung> # Kombinatorische Optimierung
    a schema:Intangible ;
    schema:name "Kombinatorische Optimierung"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/mathematique_informatique> # mathématique informatique
    a schema:Intangible ;
    schema:name "mathématique informatique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/optimisation_combinatoire> # optimisation combinatoire
    a schema:Intangible ;
    schema:name "optimisation combinatoire"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/optimisation_mathematique> # Optimisation mathématique
    a schema:Intangible ;
    schema:name "Optimisation mathématique"@en ;
    schema:name "Optimisation mathématique"@fr ;
    schema:name "optimisation mathématique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/polyedrische_kombinatorik> # Polyedrische Kombinatorik
    a schema:Intangible ;
    schema:name "Polyedrische Kombinatorik"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/polynomialzeitalgorithmus> # Polynomialzeitalgorithmus
    a schema:Intangible ;
    schema:name "Polynomialzeitalgorithmus"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2642368#Topic/programmation_mathematiques> # Programmation (Mathématiques)
    a schema:Intangible ;
    schema:name "Programmation (Mathématiques)"@en ;
    schema:name "Programmation (Mathématiques)"@fr ;
    .

<http://id.worldcat.org/fast/1012099> # Mathematical optimization
    a schema:Intangible ;
    schema:name "Mathematical optimization"@en ;
    .

<http://id.worldcat.org/fast/1078701> # Programming (Mathematics)
    a schema:Intangible ;
    schema:name "Programming (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/868972> # Combinatorial geometry
    a schema:Intangible ;
    schema:name "Combinatorial geometry"@en ;
    .

<http://id.worldcat.org/fast/940899> # Geometry of numbers
    a schema:Intangible ;
    schema:name "Geometry of numbers"@en ;
    .

<http://viaf.org/viaf/109556056> # Martin Grötschel
    a schema:Person ;
    schema:familyName "Grötschel" ;
    schema:givenName "Martin" ;
    schema:name "Martin Grötschel" ;
    .

<http://worldcat.org/isbn/9780387136240>
    a schema:ProductModel ;
    schema:isbn "038713624X" ;
    schema:isbn "9780387136240" ;
    .

<http://worldcat.org/isbn/9783540136248>
    a schema:ProductModel ;
    schema:isbn "354013624X" ;
    schema:isbn "9783540136248" ;
    .

<http://www.worldcat.org/oclc/625123472>
    a schema:CreativeWork ;
    rdfs:label "Geometric algorithms and combinatorial optimization." ;
    schema:description "Online version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/17299859> ; # Geometric algorithms and combinatorial optimization
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.