skip to content
Geometric Phases in Classical and Quantum Mechanics Preview this item
ClosePreview this item
Checking...

Geometric Phases in Classical and Quantum Mechanics

Author: Dariusz Chruściński; Andrzej Jamiołkowski
Publisher: Boston, MA : Birkhäuser Boston : Imprint : Birkhäuser, 2004.
Series: Progress in Mathematical Physics, 36; Progress in mathematical physics, 36.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This work examines the beautiful and important physical concept known as the 'geometric phase, ' bringing together different physical phenomena under a unified mathematical and physical scheme. Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Dariusz Chruściński; Andrzej Jamiołkowski
ISBN: 9780817681760 0817681760 9781461264750 1461264758
OCLC Number: 858875587
Description: 1 online resource (XIII, 337 pages).
Contents: 1 Mathematical Background --
2 Adiabatic Phases in Quantum Mechanics --
3 Adiabatic Phases in Classical Mechanics --
4 Geometric Approach to Classical Phases --
5 Geometry of Quantum Evolution --
6 Geometric Phases in Action --
A Classical Matrix Lie Groups and Algebras --
B Quaternions.
Series Title: Progress in Mathematical Physics, 36; Progress in mathematical physics, 36.
Responsibility: by Dariusz Chruściński, Andrzej Jamiołkowski.
More information:

Abstract:

This work examines the beautiful and important physical concept known as the 'geometric phase, ' bringing together different physical phenomena under a unified mathematical and physical scheme. Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the quantum and classical phases are studied from a geometric point of view, providing valuable insights into their relationship that have not been previously emphasized at the textbook level. Key Topics and Features: Background material presents basic mathematical tools on manifolds and differential forms. Topological invariants (Chern classes and homotopy theory) are explained in simple and concrete language, with emphasis on physical applications. Berry's adiabatic phase and its generalization are introduced. Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. Quantum mechanics is presented as classical Hamiltonian dynamics on a projective Hilbert space. Hannays classical adiabatic phase and angles are explained. Review of Berry and Robbins' revolutionary approach to spin-statistics. A chapter on Examples and Applications paves the way for ongoing studies of geometric phases. Problems at the end of each chapter. Extended bibliography and index. Graduate students in mathematics with some prior knowledge of quantum mechanics will learn about a class of applications of differential geometry and geometric methods in quantum theory. Physicists and graduate students in physics will learn techniques of differential geometry in an applied context.

Reviews

Editorial reviews

Publisher Synopsis

"This monograph is the most recent addition to the body of book length surveys on the topic of geometric phases and physics addressed primarily to physicists...the present title is a most welcome and Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/858875587> # Geometric Phases in Classical and Quantum Mechanics
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "858875587" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/709963#Place/boston_ma> ; # Boston, MA
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://id.worldcat.org/fast/1013446> ; # Mechanics
    schema:about <http://id.worldcat.org/fast/1085128> ; # Quantum theory
    schema:about <http://id.worldcat.org/fast/1012104> ; # Mathematical physics
    schema:about <http://dewey.info/class/519/e23/> ;
    schema:about <http://id.worldcat.org/fast/943477> ; # Global differential geometry
    schema:about <http://id.worldcat.org/fast/1152684> ; # Topological groups
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/2545548> ; # Andrzej Jamiołkowski
    schema:creator <http://experiment.worldcat.org/entity/work/data/709963#Person/chruscinski_dariusz> ; # Dariusz Chruściński
    schema:datePublished "2004" ;
    schema:description "1 Mathematical Background -- 2 Adiabatic Phases in Quantum Mechanics -- 3 Adiabatic Phases in Classical Mechanics -- 4 Geometric Approach to Classical Phases -- 5 Geometry of Quantum Evolution -- 6 Geometric Phases in Action -- A Classical Matrix Lie Groups and Algebras -- B Quaternions."@en ;
    schema:description "This work examines the beautiful and important physical concept known as the 'geometric phase, ' bringing together different physical phenomena under a unified mathematical and physical scheme. Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the quantum and classical phases are studied from a geometric point of view, providing valuable insights into their relationship that have not been previously emphasized at the textbook level. Key Topics and Features: Background material presents basic mathematical tools on manifolds and differential forms. Topological invariants (Chern classes and homotopy theory) are explained in simple and concrete language, with emphasis on physical applications. Berry's adiabatic phase and its generalization are introduced. Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. Quantum mechanics is presented as classical Hamiltonian dynamics on a projective Hilbert space. Hannays classical adiabatic phase and angles are explained. Review of Berry and Robbins' revolutionary approach to spin-statistics. A chapter on Examples and Applications paves the way for ongoing studies of geometric phases. Problems at the end of each chapter. Extended bibliography and index. Graduate students in mathematics with some prior knowledge of quantum mechanics will learn about a class of applications of differential geometry and geometric methods in quantum theory. Physicists and graduate students in physics will learn techniques of differential geometry in an applied context."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/709963> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/709963#Series/progress_in_mathematical_physics> ; # Progress in mathematical physics ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/709963#CreativeWork/> ;
    schema:name "Geometric Phases in Classical and Quantum Mechanics"@en ;
    schema:productID "858875587" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/858875587#PublicationEvent/boston_ma_birkhauser_boston_imprint_birkhauser_2004> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/709963#Agent/birkhauser> ; # Birkhäuser
    schema:publisher <http://experiment.worldcat.org/entity/work/data/709963#Agent/imprint> ; # Imprint
    schema:publisher <http://experiment.worldcat.org/entity/work/data/709963#Agent/birkhauser_boston> ; # Birkhäuser Boston
    schema:url <http://dx.doi.org/10.1007/978-0-8176-8176-0> ;
    schema:workExample <http://worldcat.org/isbn/9781461264750> ;
    schema:workExample <http://worldcat.org/isbn/9780817681760> ;
    schema:workExample <http://dx.doi.org/10.1007/978-0-8176-8176-0> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/858875587> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/709963#Agent/birkhauser> # Birkhäuser
    a bgn:Agent ;
    schema:name "Birkhäuser" ;
    .

<http://experiment.worldcat.org/entity/work/data/709963#Agent/birkhauser_boston> # Birkhäuser Boston
    a bgn:Agent ;
    schema:name "Birkhäuser Boston" ;
    .

<http://experiment.worldcat.org/entity/work/data/709963#Person/chruscinski_dariusz> # Dariusz Chruściński
    a schema:Person ;
    schema:familyName "Chruściński" ;
    schema:givenName "Dariusz" ;
    schema:name "Dariusz Chruściński" ;
    .

<http://experiment.worldcat.org/entity/work/data/709963#Series/progress_in_mathematical_physics> # Progress in mathematical physics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/858875587> ; # Geometric Phases in Classical and Quantum Mechanics
    schema:name "Progress in mathematical physics ;" ;
    schema:name "Progress in Mathematical Physics ;" ;
    .

<http://id.worldcat.org/fast/1012104> # Mathematical physics
    a schema:Intangible ;
    schema:name "Mathematical physics"@en ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/1013446> # Mechanics
    a schema:Intangible ;
    schema:name "Mechanics"@en ;
    .

<http://id.worldcat.org/fast/1085128> # Quantum theory
    a schema:Intangible ;
    schema:name "Quantum theory"@en ;
    .

<http://id.worldcat.org/fast/1152684> # Topological groups
    a schema:Intangible ;
    schema:name "Topological groups"@en ;
    .

<http://id.worldcat.org/fast/943477> # Global differential geometry
    a schema:Intangible ;
    schema:name "Global differential geometry"@en ;
    .

<http://viaf.org/viaf/2545548> # Andrzej Jamiołkowski
    a schema:Person ;
    schema:familyName "Jamiołkowski" ;
    schema:givenName "Andrzej" ;
    schema:name "Andrzej Jamiołkowski" ;
    .

<http://worldcat.org/entity/work/data/709963#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/858875587> ; # Geometric Phases in Classical and Quantum Mechanics
    .

<http://worldcat.org/isbn/9780817681760>
    a schema:ProductModel ;
    schema:isbn "0817681760" ;
    schema:isbn "9780817681760" ;
    .

<http://worldcat.org/isbn/9781461264750>
    a schema:ProductModel ;
    schema:isbn "1461264758" ;
    schema:isbn "9781461264750" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.