skip to content
Geometric properties of natural operators defined by the Riemann curvature tensor Preview this item
ClosePreview this item
Checking...

Geometric properties of natural operators defined by the Riemann curvature tensor

Author: Peter B Gilkey
Publisher: River Edge, NJ : World Scientific, ©2001.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
Annotation A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric conse-quences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Peter B Gilkey
OCLC Number: 646768703
Description: 1 online resource (viii, 306 pages) : illustrations
Contents: Algebraic curvature tensors; the skew-symmetric curvature operator; the Jacobi operator; controlling the eigenvalue structure.
Responsibility: Peter B. Gilkey.

Abstract:

This work presents results about the geometric consequences that follow if various natural operators defined in terms of the Riemann curvature tensor are assumed to have constant eigenvalues or  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/646768703> # Geometric properties of natural operators defined by the Riemann curvature tensor
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "646768703" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/9565765#Place/river_edge_nj> ; # River Edge, NJ
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
    schema:about <http://id.worldcat.org/fast/1046419> ; # Operator theory
    schema:about <http://id.worldcat.org/fast/885436> ; # Curvature
    schema:about <http://id.worldcat.org/fast/940940> ; # Geometry, Riemannian
    schema:about <http://dewey.info/class/516.373/e21/> ;
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2001" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/9565765#Person/gilkey_peter_b> ; # Peter B. Gilkey
    schema:datePublished "2001" ;
    schema:description "Annotation A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric conse-quences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the skew-symmetric curvature operator, the Szabo operator, and higher order generalizations) are assumed to have constant eigenvalues or constant Jordan normal form in the appropriate domains of definition. The book presents algebraic preliminaries and various Schur type problems; deals with the skew-symmetric curvature operator in the real and complex settings and provides the classification of algebraic curvature tensors whos skew-symmetric curvature has constant rank 2 and constant eigenvalues; discusses the Jacobi operator and a higher order generalization and gives a unified treatment of the Osserman conjecture and related questions; and establishes the results from algebraic topology that are necessary for controlling the eigenvalue structures. An extensive bibliography is provided. Results are described in the Riemannian, Lorentzian, and higher signature settings, and many families of examples are displayed."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/9565765> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:name "Geometric properties of natural operators defined by the Riemann curvature tensor"@en ;
    schema:productID "646768703" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/646768703#PublicationEvent/river_edge_nj_world_scientific_2001> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/9565765#Agent/world_scientific> ; # World Scientific
    schema:url <http://site.ebrary.com/id/10255766> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/646768703> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/9565765#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/9565765#Person/gilkey_peter_b> # Peter B. Gilkey
    a schema:Person ;
    schema:familyName "Gilkey" ;
    schema:givenName "Peter B." ;
    schema:name "Peter B. Gilkey" ;
    .

<http://experiment.worldcat.org/entity/work/data/9565765#Place/river_edge_nj> # River Edge, NJ
    a schema:Place ;
    schema:name "River Edge, NJ" ;
    .

<http://id.worldcat.org/fast/1046419> # Operator theory
    a schema:Intangible ;
    schema:name "Operator theory"@en ;
    .

<http://id.worldcat.org/fast/885436> # Curvature
    a schema:Intangible ;
    schema:name "Curvature"@en ;
    .

<http://id.worldcat.org/fast/940940> # Geometry, Riemannian
    a schema:Intangible ;
    schema:name "Geometry, Riemannian"@en ;
    .

<http://www.worldcat.org/title/-/oclc/646768703>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/646768703> ; # Geometric properties of natural operators defined by the Riemann curvature tensor
    schema:dateModified "2016-11-22" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.