skip to content
A geometric study of coherence properties of partially polarized electromagnetic radiation. Preview this item
ClosePreview this item
Checking...

A geometric study of coherence properties of partially polarized electromagnetic radiation.

Author: E Folke Bolinder; AIR FORCE CAMBRIDGE RESEARCH LABS L G HANSCOM FIELD MASS.
Publisher: Ft. Belvoir Defense Technical Information Center JUN 1964.
Edition/Format:   Book : English
Database:WorldCat
Summary:
The well-known analytic theory of partially polarized electromagnetic waves is complemented with a geometric theory. In the geometric theory the components of the 2 X 2 coherence matrix of a partially polarized plane wave and the Stokes parameters of the wave are treated in two four-dimensional spaces. From the first four-dimensional space a three-dimensional space is derived which constitutes a Poincare model of  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: E Folke Bolinder; AIR FORCE CAMBRIDGE RESEARCH LABS L G HANSCOM FIELD MASS.
OCLC Number: 227357240
Description: 25 p.

Abstract:

The well-known analytic theory of partially polarized electromagnetic waves is complemented with a geometric theory. In the geometric theory the components of the 2 X 2 coherence matrix of a partially polarized plane wave and the Stokes parameters of the wave are treated in two four-dimensional spaces. From the first four-dimensional space a three-dimensional space is derived which constitutes a Poincare model of threedimensional (non-Euclidean) hyperbolic space having a plane, the polarization ratio plane, as the fundamental surface. This model can also be obtained by a generalization to three dimensions of an elementary inversion method called the Isometric Circle Method in the polarization ratio plane. A cross section through the second four-dimensional space, which is a Minkowski model of Lorentz space, yields the Cayley-Klein model of three-dimensional hyperbolic space having the unit sphere, in optics called the Poincare sphere, as fundamental surface. Invariant properties of partially polarized waves are studied by means of the different models. So, for example, transformations of the complex degree of correlation mu and the degree of polarization P (defined as the ratio of the polarized intensity and the total intensity) are studied in the Poincare and CayleyKlein models by means of simple geometric constructions which lucidly show the relationships between the degree of correlation and the degree of polarization. (Author).

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/227357240>
library:oclcnum"227357240"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:datePublished"JUN 1964"
schema:datePublished"1964"
schema:description"The well-known analytic theory of partially polarized electromagnetic waves is complemented with a geometric theory. In the geometric theory the components of the 2 X 2 coherence matrix of a partially polarized plane wave and the Stokes parameters of the wave are treated in two four-dimensional spaces. From the first four-dimensional space a three-dimensional space is derived which constitutes a Poincare model of threedimensional (non-Euclidean) hyperbolic space having a plane, the polarization ratio plane, as the fundamental surface. This model can also be obtained by a generalization to three dimensions of an elementary inversion method called the Isometric Circle Method in the polarization ratio plane. A cross section through the second four-dimensional space, which is a Minkowski model of Lorentz space, yields the Cayley-Klein model of three-dimensional hyperbolic space having the unit sphere, in optics called the Poincare sphere, as fundamental surface. Invariant properties of partially polarized waves are studied by means of the different models. So, for example, transformations of the complex degree of correlation mu and the degree of polarization P (defined as the ratio of the polarized intensity and the total intensity) are studied in the Poincare and CayleyKlein models by means of simple geometric constructions which lucidly show the relationships between the degree of correlation and the degree of polarization. (Author)."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/62889189>
schema:inLanguage"en"
schema:name"A geometric study of coherence properties of partially polarized electromagnetic radiation."@en
schema:numberOfPages"25"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.