zum Inhalt wechseln
Geometric transitions : from hyperbolic to Ads geometry Titelvorschau
SchließenTitelvorschau
Prüfung…

Geometric transitions : from hyperbolic to Ads geometry

Verfasser/in: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Verlag: 2011.
Dissertation: Ph. D. Stanford University 2011
Ausgabe/Format   Diplomarbeit/Dissertation : Dokument : Diplomarbeit/Dissertation : E-Book   Computer-Datei : Englisch
Datenbank:WorldCat
Zusammenfassung:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Medientyp: Dokument, Diplomarbeit/Dissertation, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
OCLC-Nummer: 743406573
Anmerkungen: Submitted to the Department of Mathematics.
Beschreibung: 1 online resource
Verfasserangabe: Jeffrey Danciger.

Abstract:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


Primary Entity

<http://www.worldcat.org/oclc/743406573> # Geometric transitions : from hyperbolic to Ads geometry
    a schema:Book, schema:CreativeWork, bgn:Thesis, pto:Web_document, schema:MediaObject ;
   bgn:inSupportOf "" ;
   library:oclcnum "743406573" ;
   schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
   schema:contributor <http://experiment.worldcat.org/entity/work/data/961158795#Person/carlsson_g_gunnar_1952> ; # Gunnar Carlsson
   schema:contributor <http://viaf.org/viaf/41462215> ; # Steve Kerckhoff
   schema:contributor <http://viaf.org/viaf/172545411> ; # Maryam Mirzakhani
   schema:creator <http://experiment.worldcat.org/entity/work/data/961158795#Person/danciger_jeffrey_edward> ; # Jeffrey Edward Danciger
   schema:datePublished "2011" ;
   schema:description "We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/961158795> ;
   schema:inLanguage "en" ;
   schema:name "Geometric transitions : from hyperbolic to Ads geometry"@en ;
   schema:productID "743406573" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/743406573#PublicationEvent/2011> ;
   schema:url <http://purl.stanford.edu/ww956ty2392> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/743406573> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/961158795#Person/carlsson_g_gunnar_1952> # Gunnar Carlsson
    a schema:Person ;
   schema:birthDate "1952" ;
   schema:familyName "Carlsson" ;
   schema:givenName "Gunnar" ;
   schema:givenName "G." ;
   schema:name "Gunnar Carlsson" ;
    .

<http://experiment.worldcat.org/entity/work/data/961158795#Person/danciger_jeffrey_edward> # Jeffrey Edward Danciger
    a schema:Person ;
   schema:familyName "Danciger" ;
   schema:givenName "Jeffrey Edward" ;
   schema:name "Jeffrey Edward Danciger" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
   schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/172545411> # Maryam Mirzakhani
    a schema:Person ;
   schema:familyName "Mirzakhani" ;
   schema:givenName "Maryam" ;
   schema:name "Maryam Mirzakhani" ;
    .

<http://viaf.org/viaf/41462215> # Steve Kerckhoff
    a schema:Person ;
   schema:familyName "Kerckhoff" ;
   schema:givenName "Steve" ;
   schema:name "Steve Kerckhoff" ;
    .


Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.