omitir hasta el contenido
Geometric transitions : from hyperbolic to Ads geometry Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Geometric transitions : from hyperbolic to Ads geometry

Autor: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Editorial: 2011.
Disertación: Thesis (Ph. D.)--Stanford University, 2011.
Edición/Formato:   Tesis/disertación : Documento : Tesis de maestría/doctorado : Libro-e   Archivo de computadora : Inglés (eng)
Base de datos:WorldCat
Resumen:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de material: Documento, Tesis de maestría/doctorado, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Número OCLC: 743406573
Notas: Submitted to the Department of Mathematics.
Descripción: 1 online resource.
Responsabilidad: Jeffrey Danciger.

Resumen:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/743406573>
library:oclcnum"743406573"
library:placeOfPublication
owl:sameAs<info:oclcnum/743406573>
rdf:typej.2:Thesis
rdf:typej.2:Web_document
rdf:typej.0:Thesis
rdfs:seeAlso
schema:author
rdf:typeschema:Person
schema:name"Danciger, Jeffrey Edward."
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"2011"
schema:description"We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."
schema:exampleOfWork<http://worldcat.org/entity/work/id/961158795>
schema:inLanguage"en"
schema:name"Geometric transitions from hyperbolic to Ads geometry"
schema:url<http://purl.stanford.edu/ww956ty2392>

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.