passa ai contenuti
Geometric transitions : from hyperbolic to Ads geometry Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Geometric transitions : from hyperbolic to Ads geometry

Autore: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Editore: 2011.
Tesi: Thesis (Ph. D.)--Stanford University, 2011.
Edizione/Formato:   Tesi/dissertazione : Document : Thesis/dissertation : eBook   Computer File : English
Banca dati:WorldCat
Sommario:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Thesis/dissertation, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Numero OCLC: 743406573
Note: Submitted to the Department of Mathematics.
Descrizione: 1 online resource.
Responsabilità: Jeffrey Danciger.

Abstract:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/743406573>
library:oclcnum"743406573"
owl:sameAs<info:oclcnum/743406573>
rdf:typeschema:Book
rdf:typej.1:Thesis
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/961158795>
schema:inLanguage"en"
schema:name"Geometric transitions from hyperbolic to Ads geometry"@en
schema:url<http://purl.stanford.edu/ww956ty2392>
schema:url

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.