コンテンツへ移動
Geometric transitions : from hyperbolic to Ads geometry 資料のプレビュー
閉じる資料のプレビュー
確認中…

Geometric transitions : from hyperbolic to Ads geometry

著者: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
出版社: 2011.
論文: Ph. D. Stanford University 2011
エディション/フォーマット:   学位論文/卒業論文 : Document : Thesis/dissertation : 電子書籍   電子ファイル : English
概要:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: Document, Thesis/dissertation, インターネット資料
ドキュメントの種類 インターネット資料, 電子ファイル
すべての著者/寄与者: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
OCLC No.: 743406573
メモ: Submitted to the Department of Mathematics.
物理形態: 1 online resource
責任者: Jeffrey Danciger.

概要:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


Primary Entity

<http://www.worldcat.org/oclc/743406573> # Geometric transitions : from hyperbolic to Ads geometry
    a schema:Book, schema:CreativeWork, bgn:Thesis, pto:Web_document, schema:MediaObject ;
   bgn:inSupportOf "" ;
   library:oclcnum "743406573" ;
   schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
   schema:contributor <http://viaf.org/viaf/21239625> ; # Gunnar Carlsson
   schema:contributor <http://viaf.org/viaf/41462215> ; # Steve Kerckhoff
   schema:contributor <http://experiment.worldcat.org/entity/work/data/961158795#Person/mirzakhani_maryam> ; # Maryam Mirzakhani
   schema:creator <http://experiment.worldcat.org/entity/work/data/961158795#Person/danciger_jeffrey_edward> ; # Jeffrey Edward Danciger
   schema:datePublished "2011" ;
   schema:description "We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/961158795> ;
   schema:inLanguage "en" ;
   schema:name "Geometric transitions : from hyperbolic to Ads geometry"@en ;
   schema:productID "743406573" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/743406573#PublicationEvent/2011> ;
   schema:url <http://purl.stanford.edu/ww956ty2392> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/743406573> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/961158795#Person/danciger_jeffrey_edward> # Jeffrey Edward Danciger
    a schema:Person ;
   schema:familyName "Danciger" ;
   schema:givenName "Jeffrey Edward" ;
   schema:name "Jeffrey Edward Danciger" ;
    .

<http://experiment.worldcat.org/entity/work/data/961158795#Person/mirzakhani_maryam> # Maryam Mirzakhani
    a schema:Person ;
   schema:familyName "Mirzakhani" ;
   schema:givenName "Maryam" ;
   schema:name "Maryam Mirzakhani" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
   schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/21239625> # Gunnar Carlsson
    a schema:Person ;
   schema:birthDate "1952" ;
   schema:familyName "Carlsson" ;
   schema:givenName "Gunnar" ;
   schema:givenName "G." ;
   schema:name "Gunnar Carlsson" ;
    .

<http://viaf.org/viaf/41462215> # Steve Kerckhoff
    a schema:Person ;
   schema:familyName "Kerckhoff" ;
   schema:givenName "Steve" ;
   schema:name "Steve Kerckhoff" ;
    .


Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.