doorgaan naar inhoud
Geometric transitions : from hyperbolic to Ads geometry Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Geometric transitions : from hyperbolic to Ads geometry

Auteur: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Uitgever: 2011.
Proefschrift: Thesis (Ph. D.)--Stanford University, 2011.
Editie/Formaat:   Scriptie/Proefschrift : Document : Scriptie/Dissertatie : e-Boek   Computerbestand : Engels
Database:WorldCat
Samenvatting:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Document, Scriptie/Dissertatie, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
OCLC-nummer: 743406573
Opmerkingen: Submitted to the Department of Mathematics.
Beschrijving: 1 online resource.
Verantwoordelijkheid: Jeffrey Danciger.

Fragment:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/743406573>
library:oclcnum"743406573"
owl:sameAs<info:oclcnum/743406573>
rdf:typeschema:Book
rdf:typej.1:Thesis
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/961158795>
schema:inLanguage"en"
schema:name"Geometric transitions from hyperbolic to Ads geometry"@en
schema:url<http://purl.stanford.edu/ww956ty2392>
schema:url

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.