pular para conteúdo
Geometric transitions : from hyperbolic to Ads geometry Ver prévia deste item
FecharVer prévia deste item
Checando...

Geometric transitions : from hyperbolic to Ads geometry

Autor: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Editora: 2011.
Dissertação: Thesis (Ph. D.)--Stanford University, 2011.
Edição/Formato   Tese/dissertação : Documento : Tese/dissertação : e-book   Arquivo de Computador : Inglês
Base de Dados:WorldCat
Resumo:
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Documento, Tese/dissertação, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Jeffrey Edward Danciger; Steve Kerckhoff; G Carlsson; Maryam Mirzakhani; Stanford University. Department of Mathematics.
Número OCLC: 743406573
Notas: Submitted to the Department of Mathematics.
Descrição: 1 online resource.
Responsabilidade: Jeffrey Danciger.

Resumo:

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/743406573>
library:oclcnum"743406573"
owl:sameAs<info:oclcnum/743406573>
rdf:typeschema:Book
rdf:typej.1:Thesis
rdf:typej.1:Web_document
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/961158795>
schema:inLanguage"en"
schema:name"Geometric transitions from hyperbolic to Ads geometry"@en
schema:url<http://purl.stanford.edu/ww956ty2392>
schema:url

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.