skip to content
Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis Preview this item
ClosePreview this item
Checking...

Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis

Author: Phuong Vo T H; Martin Czygan
Publisher: Birmingham, UK : Packt Publishing, 2015.
Series: Community experience distilled.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Learn to use powerful Python libraries for effective data processing and analysisAbout This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using PythonWho This  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Phuong Vo. T.H, Martin Czygan.
Getting Started with Python Data Analysis.
Birmingham : Packt Publishing Ltd, ©2015
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Phuong Vo T H; Martin Czygan
ISBN: 9781783988457 1783988452 1785285114 9781785285110
OCLC Number: 930602036
Notes: Includes index.
Description: 1 online resource (1 volume) : illustrations.
Contents: Cover; Preface; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Chapter 1: Introducing Data Analysis and Libraries; Data analysis and processing; An overview of the libraries in data analysis; Python libraries in data analysis; NumPy; Pandas; Matplotlib; PyMongo; The scikit-learn library; Summary; Chapter 2: NumPy Arrays and Vectorized Computation; NumPy arrays; Data types; Array creation; Indexing and slicing; Fancy indexing; Numerical operations on arrays; Array functions; Data processing using arrays; Loading and saving data; Saving an array. Loading an arrayLinear algebra with NumPy; NumPy random numbers; Summary; Chapter 3: Data Analysis with Pandas; An overview of the Pandas package; The Pandas data structure; Series; The DataFrame; The essential basic functionality; Reindexing and altering labels; Head and tail; Binary operations; Functional statistics; Function application; Sorting; Indexing and selecting data; Computational tools; Working with missing data; Advanced uses of Pandas for data analysis; Hierarchical indexing; The Panel data; Summary; Chapter 4: Data Visualization; The matplotlib API primer; Line properties. Figures and subplotsExploring plot types; Scatter plots; Bar plots; Contour plots; Histogram plots; Legends and annotations; Plotting functions with Pandas; Additional Python data visualization tools; Bokeh; MayaVi; Summary; Chapter 5: Time series; Time series primer; Working with date and time objects; Resampling time series; Downsampling time series data; Upsampling time series data; Time zone handling; Timedeltas; Time series plotting; Summary; Chapter 6: Interacting With Databases; Interacting with data in text format; Reading data from text format; Writing data to text format. Interacting with data in binary formatHDF5; Interacting with data in MongoDB; Interacting with data in Redis; The simple value; List; Set; Ordered set; Summary; Chapter 7: Data Analysis Application Examples; Data munging; Cleaning data; Filtering; Merging data; Reshaping data; Data aggregation; Grouping data; Summary; Chapter 8: Machine Learning Models with scikit-learn; An overview of machine learning models; The scikit-learn modules for different models; Data representation in scikit-learn; Supervised learning --
classification and regression. Unsupervised learning --
clustering and dimensionality reductionMeasuring prediction performance; Summary; Index.
Series Title: Community experience distilled.
Responsibility: Phuong Vo. T.H, Martin Czygan.

Abstract:

Learn to use powerful Python libraries for effective data processing and analysisAbout This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using PythonWho This Book Is ForIf you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python libraryIn DetailData analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approachThis is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(3)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/930602036> # Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "930602036" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    schema:about <http://dewey.info/class/005.133/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2794737292#Topic/data_mining> ; # Data mining
    schema:about <http://experiment.worldcat.org/entity/work/data/2794737292#Topic/computers_programming_languages_python> ; # COMPUTERS--Programming Languages--Python
    schema:about <http://experiment.worldcat.org/entity/work/data/2794737292#Topic/python_computer_program_language> ; # Python (Computer program language)
    schema:author <http://experiment.worldcat.org/entity/work/data/2794737292#Person/czygan_martin> ; # Martin Czygan
    schema:author <http://experiment.worldcat.org/entity/work/data/2794737292#Person/vo_t_h_phuong> ; # Phuong Vo. T. H
    schema:bookFormat schema:EBook ;
    schema:datePublished "2015" ;
    schema:description "Cover; Preface; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Chapter 1: Introducing Data Analysis and Libraries; Data analysis and processing; An overview of the libraries in data analysis; Python libraries in data analysis; NumPy; Pandas; Matplotlib; PyMongo; The scikit-learn library; Summary; Chapter 2: NumPy Arrays and Vectorized Computation; NumPy arrays; Data types; Array creation; Indexing and slicing; Fancy indexing; Numerical operations on arrays; Array functions; Data processing using arrays; Loading and saving data; Saving an array."@en ;
    schema:description "Learn to use powerful Python libraries for effective data processing and analysisAbout This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using PythonWho This Book Is ForIf you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python libraryIn DetailData analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approachThis is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2794737292> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2794737292#Series/community_experience_distilled> ; # Community experience distilled.
    schema:isSimilarTo <http://worldcat.org/entity/work/data/2794737292#CreativeWork/getting_started_with_python_data_analysis> ;
    schema:name "Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis"@en ;
    schema:productID "930602036" ;
    schema:url <http://www.myilibrary.com?id=849275> ;
    schema:url <http://proxy.library.carleton.ca/login?url=http://proquest.safaribooksonline.com/?uiCode=carleton&xmlId=9781785285110> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=4191202> ;
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4191202> ;
    schema:url <http://proquest.safaribooksonline.com/9781785285110> ;
    schema:url <http://proquest.tech.safaribooksonline.de/9781785285110> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1091507> ;
    schema:workExample <http://worldcat.org/isbn/9781783988457> ;
    schema:workExample <http://worldcat.org/isbn/9781785285110> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/930602036> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2794737292#Person/czygan_martin> # Martin Czygan
    a schema:Person ;
    schema:familyName "Czygan" ;
    schema:givenName "Martin" ;
    schema:name "Martin Czygan" ;
    .

<http://experiment.worldcat.org/entity/work/data/2794737292#Person/vo_t_h_phuong> # Phuong Vo. T. H
    a schema:Person ;
    schema:familyName "Vo. T. H" ;
    schema:givenName "Phuong" ;
    schema:name "Phuong Vo. T. H" ;
    .

<http://experiment.worldcat.org/entity/work/data/2794737292#Series/community_experience_distilled> # Community experience distilled.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/930602036> ; # Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis
    schema:name "Community experience distilled." ;
    schema:name "Community experience distilled" ;
    .

<http://experiment.worldcat.org/entity/work/data/2794737292#Topic/computers_programming_languages_python> # COMPUTERS--Programming Languages--Python
    a schema:Intangible ;
    schema:name "COMPUTERS--Programming Languages--Python"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2794737292#Topic/python_computer_program_language> # Python (Computer program language)
    a schema:Intangible ;
    schema:name "Python (Computer program language)"@en ;
    .

<http://proquest.tech.safaribooksonline.de/9781785285110>
    rdfs:comment "URL des Erstveröffentlichers" ;
    .

<http://worldcat.org/entity/work/data/2794737292#CreativeWork/getting_started_with_python_data_analysis>
    a schema:CreativeWork ;
    rdfs:label "Getting Started with Python Data Analysis." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/930602036> ; # Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis
    .

<http://worldcat.org/isbn/9781783988457>
    a schema:ProductModel ;
    schema:isbn "1783988452" ;
    schema:isbn "9781783988457" ;
    .

<http://worldcat.org/isbn/9781785285110>
    a schema:ProductModel ;
    schema:isbn "1785285114" ;
    schema:isbn "9781785285110" ;
    .

<http://www.worldcat.org/title/-/oclc/930602036>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/930602036> ; # Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis
    schema:dateModified "2018-07-13" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.