skip to content
Global aspects of classical integrable systems Preview this item
ClosePreview this item
Checking...

Global aspects of classical integrable systems

Author: Richard H Cushman; Larry M Bates
Publisher: Basel ; Boston : Birkhäuser Verlag, ©1997.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Summary:

Gives a description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Richard H Cushman; Larry M Bates
ISBN: 0817654852 9780817654856 3764354852 9783764354855
OCLC Number: 36083666
Description: xvi, 435 p. : ill. ; 24 cm.
Contents: I. The harmonic oscillator.- 1. Hamilton's equations and Sl symmetry.- 2. S1 energy momentum mapping.- 3. U(2) momentum mapping.- 4. The Hopf fibration.- 5. Invariant theory and reduction.- 6. Exercises.- II. Geodesics on S3.- 1. The geodesic and Delaunay vector fields.- 2. The SO(4) momentum mapping.- 3. The Kepler problem.- 3.1 The Kepler vector field.- 3.2 The so(4) momentum map.- 3.3 Kepler's equation.- 3.4 Regularization of the Kepler vector field.- 4. Exercises.- III The Euler top.- 1. Facts about SO(3).- 1.1 The standard model.- 1.2 The exponential map.- 1.3 The solid ball model.- 1.4 The sphere bundle model.- 2. Left invariant geodesics.- 2.1 Euler-Arnol'd equations on SO(3).- 2.2 Euler-Arnol'd equations on T1S2 x R3.- 3. Symmetry and reduction.- 3.1 Construction of the reduced phase space.- 3.2 Geometry of the reduction map.- 3.3 Euler's equations.- 4. Qualitative behavior of the reduced system.- 5. Analysis of the energy momentum map.- 6. Integration of the Euler-Arnol'd equations.- 7. The rotation number.- 7.1 An analytic formula.- 7.2 Poinsot's construction.- 8. A twisting phenomenon.- 9. Exercises.- IV. The spherical pendulum.- 1. Liouville integrability.- 2. Reduction of the Sl symmetry.- 3. The energy momentum mapping.- 4. Rotation number and first return time.- 5. Monodromy.- 6. Exercises.- V. The Lagrange top.- 1. The basic model.- 2. Liouville integrability.- 3. Reduction of the right Sl action.- 3.1 Reduction to the Euler-Poisson equations.- 3.2 The magnetic spherical pendulum.- 4. Reduction of the left S1 action.- 5. The Poisson structure.- 6. The Euler-Poisson equations.- 6.1 The Poisson structure.- 6.2 The energy momentum mapping.- 6.3 Motion of the tip of the figure axis.- 7. The energy momemtum mapping.- 7.1 Topology of ???1(h,a,b) and H?1(h).- 7.2 The discriminant locus.- 7.3 The period lattice and monodromy.- 8. The Hamiltonian Hopf bifurcation.- 8.1 The linear case.- 8.2 The nonlinear case.- 9. Exercises.- Appendix A. Fundamental concepts.- 1. Symplectic linear algebra.- 2. Symplectic manifolds.- 3. Hamilton's equations.- 4. Poisson algebras and manifolds.- 5. Exercises.- Appendix B. Systems with symmetry.- 1. Smooth group actions.- 2. Orbit spaces.- 2.1 Orbit space of a proper action.- 2.2 Orbit space of a free action.- 2.3 Orbit space of a locally free action.- 3. Momentum mappings.- 3.1 General properties.- 3.2 Normal form.- 4. Reduction: the regular case.- 5. Reduction: the singular case.- 6. Exercises.- Appendix C. Ehresmann connections.- 1. Basic properties.- 2. The Ehresmann theorems.- 3. Exercises.- Appendix D. Action angle coordinates.- 1. Local action angle coordinates.- 2. Monodromy.- 3. Exercises.- Appendix E. Basic Morse theory.- 1. Preliminaries.- 2. The Morse lemma.- 3. The Morse isotopy lemma.- 4. Exercises.- Notes.- References.- Acknowledgements.
Responsibility: Richard H. Cushman, Larry M. Bates.
More information:

Reviews

Editorial reviews

Publisher Synopsis

"Ideal for someone who needs a thorough global understanding of one of these systems [and] who would like to learn some of the tools and language of modern geometric mechanics. The exercises at the Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/36083666>
library:oclcnum"36083666"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/36083666>
rdf:typeschema:Book
rdfs:seeAlso
schema:about
rdf:typeschema:Intangible
schema:name"Systèmes hamiltoniens."
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Hamilton-vergelijkingen."
schema:author
schema:contributor
schema:copyrightYear"1997"
schema:datePublished"1997"
schema:exampleOfWork<http://worldcat.org/entity/work/id/630222>
schema:inLanguage"en"
schema:name"Global aspects of classical integrable systems"
schema:numberOfPages"435"
schema:publisher
schema:workExample
schema:workExample
schema:workExample
schema:workExample
umbel:isLike<http://d-nb.info/949157783>

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.