zum Inhalt wechseln
Grammatical trigrams : a probabilistic model of link grammar Titelvorschau
SchließenTitelvorschau
Prüfung…

Grammatical trigrams : a probabilistic model of link grammar

Verfasser/in: John D Lafferty; Daniel D Sleator; Davy Temperley
Verlag: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1992]
Serien: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Ausgabe/Format   Buch : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Dokumenttyp: Buch
Alle Autoren: John D Lafferty; Daniel D Sleator; Davy Temperley
OCLC-Nummer: 26847322
Anmerkungen: "To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language."
"September 1992."
Beschreibung: 10 p. ; 28 cm.
Serientitel: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Verfasserangabe: John Lafferty, Daniel Sleator, Davy Temperley.

Abstract:

Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language."

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.

Ähnliche Titel

Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/26847322>
library:oclcnum"26847322"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/26847322>
rdf:typeschema:Book
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1034365>
rdf:typeschema:Intangible
schema:name"Natural language processing (Computer science)"
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1992"
schema:description"Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language.""
schema:exampleOfWork<http://worldcat.org/entity/work/id/29987363>
schema:inLanguage"en"
schema:name"Grammatical trigrams : a probabilistic model of link grammar"
schema:numberOfPages"10"
schema:publisher
schema:url

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.