omitir hasta el contenido
Grammatical trigrams : a probabilistic model of link grammar Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Grammatical trigrams : a probabilistic model of link grammar

Autor: John D Lafferty; Daniel D Sleator; Davy Temperley
Editorial: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1992]
Serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Edición/Formato:   Libro : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Libro/Texto
Todos autores / colaboradores: John D Lafferty; Daniel D Sleator; Davy Temperley
Número OCLC: 26847322
Notas: "To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language."
"September 1992."
Descripción: 10 pages ; 28 cm.
Título de la serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Responsabilidad: John Lafferty, Daniel Sleator, Davy Temperley.

Resumen:

Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language."

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/26847322>
library:oclcnum"26847322"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
<http://id.worldcat.org/fast/1034365>
rdf:typeschema:Intangible
schema:name"Natural language processing (Computer science)"@en
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1992"
schema:description"Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language.""@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/29987363>
schema:inLanguage"en"
schema:isPartOf
schema:name"Grammatical trigrams : a probabilistic model of link grammar"@en
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.