doorgaan naar inhoud
Grammatical trigrams : a probabilistic model of link grammar Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Grammatical trigrams : a probabilistic model of link grammar

Auteur: John D Lafferty; Daniel D Sleator; Davy Temperley
Uitgever: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1992]
Serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Editie/Formaat:   Boek : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Soort document: Boek
Alle auteurs / medewerkers: John D Lafferty; Daniel D Sleator; Davy Temperley
OCLC-nummer: 26847322
Opmerkingen: "To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language."
"September 1992."
Beschrijving: 10 p. ; 28 cm.
Serietitel: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Verantwoordelijkheid: John Lafferty, Daniel Sleator, Davy Temperley.

Fragment:

Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language."

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/26847322>
library:oclcnum"26847322"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/26847322>
rdf:typeschema:Book
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1034365>
rdf:typeschema:Intangible
schema:name"Natural language processing (Computer science)"@en
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1992"
schema:description"Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language.""@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/29987363>
schema:inLanguage"en"
schema:name"Grammatical trigrams : a probabilistic model of link grammar"@en
schema:numberOfPages"10"
schema:publisher
schema:url

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.