pular para conteúdo
Grammatical trigrams : a probabilistic model of link grammar Ver prévia deste item
FecharVer prévia deste item
Checando...

Grammatical trigrams : a probabilistic model of link grammar

Autor: John D Lafferty; Daniel D Sleator; Davy Temperley
Editora: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1992]
Séries: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Edição/Formato   Livro : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Documento: Livro
Todos os Autores / Contribuintes: John D Lafferty; Daniel D Sleator; Davy Temperley
Número OCLC: 26847322
Notas: "To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language."
"September 1992."
Descrição: 10 p. ; 28 cm.
Título da Série: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
Responsabilidade: John Lafferty, Daniel Sleator, Davy Temperley.

Resumo:

Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language."

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/26847322>
library:oclcnum"26847322"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/26847322>
rdf:typeschema:Book
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/1034365>
rdf:typeschema:Intangible
schema:name"Natural language processing (Computer science)"
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1992"
schema:description"Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language.""
schema:exampleOfWork<http://worldcat.org/entity/work/id/29987363>
schema:inLanguage"en"
schema:name"Grammatical trigrams : a probabilistic model of link grammar"
schema:numberOfPages"10"
schema:publisher
schema:url

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.