跳至内容
Grammatical trigrams : a probabilistic model of link grammar 線上預覽
關閉線上預覽
正在查...

Grammatical trigrams : a probabilistic model of link grammar

作者: John D Lafferty; Daniel D Sleator; Davy Temperley
出版商: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [1992]
叢書: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
版本/格式:   圖書 : 英語所有版本和格式的總覽
資料庫:WorldCat
提要:
Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

主題
更多類似這樣的

 

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

文件類型: 圖書
所有的作者/貢獻者: John D Lafferty; Daniel D Sleator; Davy Temperley
OCLC系統控制編碼: 26847322
注意: "To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language."
"September 1992."
描述: 10 pages ; 28 cm.
叢書名: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-92-181.
責任: John Lafferty, Daniel Sleator, Davy Temperley.

摘要:

Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language."

評論

讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個

類似資料

確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


<http://www.worldcat.org/oclc/26847322>
library:oclcnum"26847322"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
<http://id.worldcat.org/fast/1034365>
rdf:typeschema:Intangible
schema:name"Natural language processing (Computer science)"@en
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1992"
schema:description"Abstract: "In this paper we present a new class of language models. This class derives from link grammar, a context-free formalism for the description of natural language. We describe an algorithm for determining maximum-likelihood estimates of the parameters of these models. The language models which we present differ from previous models based on stochastic context-free grammars in that they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass. The motivation for considering this class is to estimate the contribution which grammar can make to reducing the relative entropy of natural language.""@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/29987363>
schema:inLanguage"en"
schema:isPartOf
schema:name"Grammatical trigrams : a probabilistic model of link grammar"@en
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.