skip to content
Ground state energy of the magnetic Laplacian on corner domains Preview this item
ClosePreview this item
Checking...

Ground state energy of the magnetic Laplacian on corner domains

Author: Virginie Bonnaillie-Noël; Monique Dauge; Nicolas Popoff
Publisher: Paris : Société mathématique de France, 2016.
Series: Mémoire (Société mathématique de France), nouv. sér., no 145.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"The asymptotic behavior of the first eigenvalue of a magnetic Laplacian in the strong field limit and with the Neumann realization in a smooth domain is characterized for dimensions 2 and 3 by model problems inside the domain or on its boundary. In dimension 2, for polygonal domains, a new set of model problems on sectors has to be taken into account. In this work, we consider the class of general corner domains.  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Virginie Bonnaillie-Noël; Monique Dauge; Nicolas Popoff
ISBN: 9782856298305 2856298303
OCLC Number: 946982590
Language Note: Text in English with abstracts in English and French.
Description: vii, 138 pages : illustrations ; 25 cm.
Series Title: Mémoire (Société mathématique de France), nouv. sér., no 145.
Responsibility: Virginie Bonnaillie-Noël, Monique Dauge, Nicolas Popoff.

Abstract:

"The asymptotic behavior of the first eigenvalue of a magnetic Laplacian in the strong field limit and with the Neumann realization in a smooth domain is characterized for dimensions 2 and 3 by model problems inside the domain or on its boundary. In dimension 2, for polygonal domains, a new set of model problems on sectors has to be taken into account. In this work, we consider the class of general corner domains. In dimension 3, they include as particular cases polyhedra and axisymmetric cones. We attach model problems not only to each point of the closure of the domain, but also to a hierarchy of "tangent substructures'' associated with singular chains. We investigate spectral properties of these model problems, namely semicontinuity and existence of bounded generalized eigenfunctions. We prove estimates for the remainders of our asymptotic formula. Lower bounds are obtained with the help of an IMS type partition based on adequate two-scale coverings of the corner domain, whereas upper bounds are established by a novel construction of quasimodes, qualified as sitting or sliding according to spectral properties of local model problems. A part of our analysis extends to any dimension"--Back cover.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/946982590> # Ground state energy of the magnetic Laplacian on corner domains
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "946982590" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/fr> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/2986870117#Topic/mathematical_physics> ; # Mathematical physics
   schema:about <http://experiment.worldcat.org/entity/work/data/2986870117#Topic/boundary_value_problems> ; # Boundary value problems
   schema:about <http://experiment.worldcat.org/entity/work/data/2986870117#Topic/laplacian_operator> ; # Laplacian operator
   schema:about <http://experiment.worldcat.org/entity/work/data/2986870117#Topic/quantum_theory> ; # Quantum theory
   schema:author <http://experiment.worldcat.org/entity/work/data/2986870117#Person/popoff_nicolas_1985> ; # Nicolas Popoff
   schema:author <http://experiment.worldcat.org/entity/work/data/2986870117#Person/dauge_monique_1956> ; # Monique Dauge
   schema:author <http://experiment.worldcat.org/entity/work/data/2986870117#Person/bonnaillie_noel_virginie_1976> ; # Virginie Bonnaillie-Noël
   schema:bookFormat bgn:PrintBook ;
   schema:datePublished "2016" ;
   schema:description ""The asymptotic behavior of the first eigenvalue of a magnetic Laplacian in the strong field limit and with the Neumann realization in a smooth domain is characterized for dimensions 2 and 3 by model problems inside the domain or on its boundary. In dimension 2, for polygonal domains, a new set of model problems on sectors has to be taken into account. In this work, we consider the class of general corner domains. In dimension 3, they include as particular cases polyhedra and axisymmetric cones. We attach model problems not only to each point of the closure of the domain, but also to a hierarchy of "tangent substructures'' associated with singular chains. We investigate spectral properties of these model problems, namely semicontinuity and existence of bounded generalized eigenfunctions. We prove estimates for the remainders of our asymptotic formula. Lower bounds are obtained with the help of an IMS type partition based on adequate two-scale coverings of the corner domain, whereas upper bounds are established by a novel construction of quasimodes, qualified as sitting or sliding according to spectral properties of local model problems. A part of our analysis extends to any dimension"--Back cover."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/2986870117> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/0249-633X> ; # Mémoires de la Société Mathématique de France,
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2986870117#Series/memoire_societe_mathematique_de_france> ; # Mémoire (Société mathématique de France) ;
   schema:name "Ground state energy of the magnetic Laplacian on corner domains"@en ;
   schema:productID "946982590" ;
   schema:workExample <http://worldcat.org/isbn/9782856298305> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/946982590> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2986870117#Person/bonnaillie_noel_virginie_1976> # Virginie Bonnaillie-Noël
    a schema:Person ;
   schema:birthDate "1976" ;
   schema:familyName "Bonnaillie-Noël" ;
   schema:givenName "Virginie" ;
   schema:name "Virginie Bonnaillie-Noël" ;
    .

<http://experiment.worldcat.org/entity/work/data/2986870117#Person/dauge_monique_1956> # Monique Dauge
    a schema:Person ;
   schema:birthDate "1956" ;
   schema:familyName "Dauge" ;
   schema:givenName "Monique" ;
   schema:name "Monique Dauge" ;
    .

<http://experiment.worldcat.org/entity/work/data/2986870117#Person/popoff_nicolas_1985> # Nicolas Popoff
    a schema:Person ;
   schema:birthDate "1985" ;
   schema:familyName "Popoff" ;
   schema:givenName "Nicolas" ;
   schema:name "Nicolas Popoff" ;
    .

<http://experiment.worldcat.org/entity/work/data/2986870117#Series/memoire_societe_mathematique_de_france> # Mémoire (Société mathématique de France) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/946982590> ; # Ground state energy of the magnetic Laplacian on corner domains
   schema:name "Mémoire (Société mathématique de France) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/2986870117#Topic/boundary_value_problems> # Boundary value problems
    a schema:Intangible ;
   schema:name "Boundary value problems"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2986870117#Topic/mathematical_physics> # Mathematical physics
    a schema:Intangible ;
   schema:name "Mathematical physics"@en ;
    .

<http://worldcat.org/isbn/9782856298305>
    a schema:ProductModel ;
   schema:isbn "2856298303" ;
   schema:isbn "9782856298305" ;
    .

<http://worldcat.org/issn/0249-633X> # Mémoires de la Société Mathématique de France,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/946982590> ; # Ground state energy of the magnetic Laplacian on corner domains
   schema:issn "0249-633X" ;
   schema:name "Mémoires de la Société Mathématique de France," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.