skip to content
Groups with the Haagerup property : Gromov's a-T-menability Preview this item
ClosePreview this item
Checking...

Groups with the Haagerup property : Gromov's a-T-menability

Publisher: Basel ; Boston ; Berlin : Birkhäuser, cop. 2001.
Series: Progress in mathematics, 197
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. This book covers various aspects of  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
ISBN: 3764365986 9783764365981
OCLC Number: 469272152
Notes: Bibliogr. p. 115-123. Index.
Credits: Ont également collaboré: A. Valette, P. Jolissaint.
Description: VII-126 p. ; 24 cm.
Contents: 1 Introduction.- 1.1 Basic definitions.- 1.1.1 The Haagerup property, or a-T-menability.- 1.1.2 Kazhdan's property (T).- 1.2 Examples.- 1.2.1 Compact groups.- 1.2.2 SO(n, 1) and SU(n, 1).- 1.2.3 Groups acting properly on trees.- 1.2.4 Groups acting properly on R-trees.- 1.2.5 Coxeter groups.- 1.2.6 Amenable groups.- 1.2.7 Groups acting on spaces with walls.- 1.3 What is the Haagerup property good for?.- 1.3.1 Harmonic analysis: weak amenability.- 1.3.2 K-amenability.- 1.3.3 The Baum-Connes conjecture.- 1.4 What this book is about.- 2 Dynamical Characterizations.- 2.1 Definitions and statements of results.- 2.2 Actions on measure spaces.- 2.3 Actions on factors.- 3 Simple Lie Groups of Rank One.- 3.1 The Busemann cocycle and theGromov scalar product.- 3.2 Construction of a quadratic form.- 3.3 Positivity.- 3.4 The link with complementary series.- 4 Classification of Lie Groups with the Haagerup Property.- 4.0 Introduction.- 4.1 Step one.- 4.1.1 The fine structure of Lie groups.- 4.1.2 A criterion for relative property (T).- 4.1.3 Conclusion of step one.- 4.2 Step two.- 4.2.1 The generalized Haagerup property.- 4.2.2 Amenable groups.- 4.2.3 Simple Lie groups.- 4.2.4 A covering group.- 4.2.5 Spherical functions.- 4.2.6 The group SU(n,1).- 4.2.7 The groups SO(n, 1) and SU(n,1)..- 4.2.8 Conclusion of step two.- 5 The Radial Haagerup Property.- 5.0 Introduction.- 5.1 The geometry of harmonic NA groups.- 5.2 Harmonic analysis on H-type groups.- 5.3 Analysis on harmonic NA groups.- 5.4 Positive definite spherical functions.- 5.5 Appendix on special functions.- 6 Discrete Groups.- 6.1 Some hereditary results.- 6.2 Groups acting on trees.- 6.3 Group presentations.- 6.4 Appendix: Completely positive mapson amalgamated products,by Paul Jolissaint.- 7 Open Questions and Partial Results.- 7.1 Obstructions to the Haagerup property.- 7.2 Classes of groups.- 7.2.1 One-relator groups.- 7.2.2 Three-manifold groups.- 7.2.3 Braid groups.- 7.3 Group constructions.- 7.3.1 Semi-direct products.- 7.3.2 Actions on trees.- 7.3.3 Central extensions.- 7.4 Geometric characterizations.- 7.4.1 Chasles' relation.- 7.4.2 Some cute and sexy spaces.- 7.5 Other dynamical characterizations.- 7.5.1 Actions on infinite measure spaces.- 7.5.2 Invariant probability measures.
Series Title: Progress in mathematics, 197
Responsibility: Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint ... [et al.].
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/469272152> # Groups with the Haagerup property : Gromov's a-T-menability
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "469272152" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/898189325#Place/basel> ; # Basel
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/898189325#Place/berlin> ; # Berlin
   library:placeOfPublication <http://dbpedia.org/resource/Boston> ; # Boston
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
   schema:about <http://dewey.info/class/512.2/e22/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/898189325#Topic/groupes_theorie_des> ; # Groupes, Théorie des
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "op." ;
   schema:datePublished "2001" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/898189325> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/898189325#Series/progress_in_mathematics> ; # Progress in mathematics ;
   schema:name "Groups with the Haagerup property : Gromov's a-T-menability" ;
   schema:productID "469272152" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/469272152#PublicationEvent/basel_boston_berlin_birkhauser_cop_2001> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/898189325#Agent/birkhauser> ; # Birkhäuser
   schema:workExample <http://worldcat.org/isbn/9783764365981> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/469272152> ;
    .


Related Entities

<http://dbpedia.org/resource/Boston> # Boston
    a schema:Place ;
   schema:name "Boston" ;
    .

<http://experiment.worldcat.org/entity/work/data/898189325#Series/progress_in_mathematics> # Progress in mathematics ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/469272152> ; # Groups with the Haagerup property : Gromov's a-T-menability
   schema:name "Progress in mathematics ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/898189325#Topic/groupes_theorie_des> # Groupes, Théorie des
    a schema:Intangible ;
   schema:name "Groupes, Théorie des" ;
    .

<http://worldcat.org/isbn/9783764365981>
    a schema:ProductModel ;
   schema:isbn "3764365986" ;
   schema:isbn "9783764365981" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.