zum Inhalt wechseln
Guts of surfaces and the colored Jones polynomial Titelvorschau
SchließenTitelvorschau
Prüfung…

Guts of surfaces and the colored Jones polynomial

Verfasser/in: David Futer; Efstratia Kalfagianni; Jessica Purcell
Verlag: Berlin : Springer, ©2013.
Serien: Lecture notes in mathematics (Springer-Verlag), 2069.
Ausgabe/Format   E-Book : Dokument : EnglischAlle Ausgaben und Formate anzeigen
Datenbank:WorldCat
Zusammenfassung:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Gattung/Form: Electronic books
Medientyp: Dokument, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
OCLC-Nummer: 822868959
Beschreibung: 1 online resource (x, 170 p.) : ill. (some col.)
Inhalt: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
Serientitel: Lecture notes in mathematics (Springer-Verlag), 2069.
Verfasserangabe: David Futer, Efstratia Kalfagianni, Jessica Purcell.
Weitere Informationen:

Abstract:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  Weiterlesen…

Rezensionen

Redaktionelle Rezension

Nielsen BookData

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book Weiterlesen…

 
Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/822868959>
library:oclcnum"822868959"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/822868959>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191327994>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Guts of surfaces and the colored Jones polynomial"
schema:numberOfPages"170"
schema:publisher
schema:url
schema:url<http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1>
schema:url<http://dx.doi.org/10.1007/978-3-642-33302-6>
schema:url<http://site.ebrary.com/id/10656374>
schema:workExample

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.