omitir hasta el contenido
Guts of surfaces and the colored Jones polynomial Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Guts of surfaces and the colored Jones polynomial

Autor: David Futer; Efstratia Kalfagianni; Jessica Purcell
Editorial: Berlin : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
Número OCLC: 822868959
Descripción: 1 online resource (x, 170 p.) : ill. (some col.)
Contenido: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
Título de la serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Responsabilidad: David Futer, Efstratia Kalfagianni, Jessica Purcell.
Más información:

Resumen:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  Leer más

Reseñas

Reseñas editoriales

Resumen de la editorial

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/822868959>
library:oclcnum"822868959"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/822868959>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191327994>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Guts of surfaces and the colored Jones polynomial"
schema:numberOfPages"170"
schema:publisher
schema:url
schema:url<http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1>
schema:url<http://dx.doi.org/10.1007/978-3-642-33302-6>
schema:url<http://site.ebrary.com/id/10656374>
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.