passa ai contenuti
Guts of surfaces and the colored Jones polynomial Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Guts of surfaces and the colored Jones polynomial

Autore: David Futer; Efstratia Kalfagianni; Jessica Purcell
Editore: Berlin : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Edizione/Formato:   eBook : Document : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Genere/forma: Electronic books
Tipo materiale: Document, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
Numero OCLC: 822868959
Descrizione: 1 online resource (x, 170 pages) : illustrations (some color).
Contenuti: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
Titolo della serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Responsabilità: David Futer, Efstratia Kalfagianni, Jessica Purcell.
Maggiori informazioni:

Abstract:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  Per saperne di più…

Commenti

Recensioni editoriali

Sinossi editore

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book Per saperne di più…

 
Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


Primary Entity

<http://www.worldcat.org/oclc/822868959> # Guts of surfaces and the colored Jones polynomial
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "822868959" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1191327994#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/515.946/e23/> ;
    schema:about <http://id.worldcat.org/fast/871593> ; # Complex manifolds
    schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/knoten> ; # Knoten
    schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> ; # Niederdimensionale Topologie
    schema:about <http://id.worldcat.org/fast/940922> ; # Geometry, Hyperbolic
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/298709121> ; # Efstratia Kalfagianni
    schema:contributor <http://viaf.org/viaf/299020509> ; # Jessica Purcell
    schema:copyrightYear "2013" ;
    schema:creator <http://viaf.org/viaf/299410175> ; # David Futer
    schema:datePublished "2013" ;
    schema:description "This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1191327994> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:name "Guts of surfaces and the colored Jones polynomial"@en ;
    schema:productID "822868959" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/822868959#PublicationEvent/berlin_springer_2013> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1191327994#Agent/springer> ; # Springer
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3070786> ;
    schema:url <http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1> ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-33302-6> ;
    schema:url <http://site.ebrary.com/id/10656374> ;
    schema:workExample <http://worldcat.org/isbn/9783642333026> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/822868959> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> # Niederdimensionale Topologie
    a schema:Intangible ;
    schema:name "Niederdimensionale Topologie"@en ;
    .

<http://id.worldcat.org/fast/871593> # Complex manifolds
    a schema:Intangible ;
    schema:name "Complex manifolds"@en ;
    .

<http://id.worldcat.org/fast/940922> # Geometry, Hyperbolic
    a schema:Intangible ;
    schema:name "Geometry, Hyperbolic"@en ;
    .

<http://viaf.org/viaf/298709121> # Efstratia Kalfagianni
    a schema:Person ;
    schema:familyName "Kalfagianni" ;
    schema:givenName "Efstratia" ;
    schema:name "Efstratia Kalfagianni" ;
    .

<http://viaf.org/viaf/299020509> # Jessica Purcell
    a schema:Person ;
    schema:familyName "Purcell" ;
    schema:givenName "Jessica" ;
    schema:name "Jessica Purcell" ;
    .

<http://viaf.org/viaf/299410175> # David Futer
    a schema:Person ;
    schema:familyName "Futer" ;
    schema:givenName "David" ;
    schema:name "David Futer" ;
    .

<http://worldcat.org/isbn/9783642333026>
    a schema:ProductModel ;
    schema:isbn "3642333028" ;
    schema:isbn "9783642333026" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.