passa ai contenuti
Guts of surfaces and the colored Jones polynomial Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Guts of surfaces and the colored Jones polynomial

Autore: David Futer; Efstratia Kalfagianni; Jessica Purcell
Editore: Berlin : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Edizione/Formato:   eBook : Document : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Genere/forma: Electronic books
Tipo materiale: Document, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
Numero OCLC: 822868959
Descrizione: 1 online resource (x, 170 p.) : ill. (some col.)
Contenuti: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
Titolo della serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Responsabilità: David Futer, Efstratia Kalfagianni, Jessica Purcell.
Maggiori informazioni:

Abstract:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  Per saperne di più…

Commenti

Recensioni editoriali

Sinossi editore

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book Per saperne di più…

 
Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/822868959>
library:oclcnum"822868959"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/822868959>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191327994>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Guts of surfaces and the colored Jones polynomial"
schema:numberOfPages"170"
schema:publisher
schema:url
schema:url<http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1>
schema:url<http://dx.doi.org/10.1007/978-3-642-33302-6>
schema:url<http://site.ebrary.com/id/10656374>
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.