コンテンツへ移動
Guts of surfaces and the colored Jones polynomial 資料のプレビュー
閉じる資料のプレビュー
確認中…

Guts of surfaces and the colored Jones polynomial

著者: David Futer; Efstratia Kalfagianni; Jessica Purcell
出版: Berlin : Springer, ©2013.
シリーズ: Lecture notes in mathematics (Springer-Verlag), 2069.
エディション/フォーマット:   電子書籍 : Document : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

ジャンル/形式: Electronic books
資料の種類: Document, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
OCLC No.: 822868959
物理形態: 1 online resource (x, 170 pages) : illustrations (some color).
コンテンツ: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
シリーズタイトル: Lecture notes in mathematics (Springer-Verlag), 2069.
責任者: David Futer, Efstratia Kalfagianni, Jessica Purcell.

概要:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  続きを読む

レビュー

編集者のレビュー

出版社によるあらすじ

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book 続きを読む

 
ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


Primary Entity

<http://www.worldcat.org/oclc/822868959> # Guts of surfaces and the colored Jones polynomial
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
   library:oclcnum "822868959" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1191327994#Place/berlin> ; # Berlin
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   schema:about <http://dewey.info/class/515.946/e23/> ;
   schema:about <http://id.worldcat.org/fast/871593> ; # Complex manifolds
   schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/knoten> ; # Knoten
   schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> ; # Niederdimensionale Topologie
   schema:about <http://id.worldcat.org/fast/940922> ; # Geometry, Hyperbolic
   schema:bookFormat schema:EBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1191327994#Person/kalfagianni_efstratia> ; # Efstratia Kalfagianni
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1191327994#Person/purcell_jessica> ; # Jessica Purcell
   schema:copyrightYear "2013" ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/1191327994#Person/futer_david> ; # David Futer
   schema:datePublished "2013" ;
   schema:description "This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1191327994> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
   schema:name "Guts of surfaces and the colored Jones polynomial"@en ;
   schema:productID "822868959" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/822868959#PublicationEvent/berlin_springer_2013> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1191327994#Agent/springer> ; # Springer
   schema:url <http://rd.springer.com/openurl?genre=book&isbn=978-3-642-33301-9> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3070786> ;
   schema:url <http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1> ;
   schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-642-33301-9> ;
   schema:url <http://dx.doi.org/10.1007/978-3-642-33302-6> ;
   schema:url <http://site.ebrary.com/id/10656374> ;
   schema:workExample <http://worldcat.org/isbn/9783642333026> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/822868959> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1191327994#Person/futer_david> # David Futer
    a schema:Person ;
   schema:familyName "Futer" ;
   schema:givenName "David" ;
   schema:name "David Futer" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Person/kalfagianni_efstratia> # Efstratia Kalfagianni
    a schema:Person ;
   schema:familyName "Kalfagianni" ;
   schema:givenName "Efstratia" ;
   schema:name "Efstratia Kalfagianni" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Person/purcell_jessica> # Jessica Purcell
    a schema:Person ;
   schema:familyName "Purcell" ;
   schema:givenName "Jessica" ;
   schema:name "Jessica Purcell" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
   schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> # Niederdimensionale Topologie
    a schema:Intangible ;
   schema:name "Niederdimensionale Topologie"@en ;
    .

<http://id.worldcat.org/fast/871593> # Complex manifolds
    a schema:Intangible ;
   schema:name "Complex manifolds"@en ;
    .

<http://id.worldcat.org/fast/940922> # Geometry, Hyperbolic
    a schema:Intangible ;
   schema:name "Geometry, Hyperbolic"@en ;
    .

<http://worldcat.org/isbn/9783642333026>
    a schema:ProductModel ;
   schema:isbn "3642333028" ;
   schema:isbn "9783642333026" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
   schema:issn "1617-9692" ;
   schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.