doorgaan naar inhoud
Guts of surfaces and the colored Jones polynomial Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Guts of surfaces and the colored Jones polynomial

Auteur: David Futer; Efstratia Kalfagianni; Jessica Purcell
Uitgever: Berlin : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2069.
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
OCLC-nummer: 822868959
Beschrijving: 1 online resource (x, 170 p.) : ill. (some col.)
Inhoud: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
Serietitel: Lecture notes in mathematics (Springer-Verlag), 2069.
Verantwoordelijkheid: David Futer, Efstratia Kalfagianni, Jessica Purcell.
Meer informatie:

Fragment:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/822868959>
library:oclcnum"822868959"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191327994>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Guts of surfaces and the colored Jones polynomial"
schema:numberOfPages"170"
schema:publication
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1>
schema:url<http://dx.doi.org/10.1007/978-3-642-33302-6>
schema:url<http://site.ebrary.com/id/10656374>
schema:workExample
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.