跳到内容
Guts of surfaces and the colored Jones polynomial 预览资料
关闭预览资料
正在查...

Guts of surfaces and the colored Jones polynomial

著者: David Futer; Efstratia Kalfagianni; Jessica Purcell
出版商: Berlin : Springer, ©2013.
丛书: Lecture notes in mathematics (Springer-Verlag), 2069.
版本/格式:   电子图书 : 文献 : 英语查看所有的版本和格式
数据库:WorldCat
提要:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在线查找

与资料的链接

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

类型/形式: Electronic books
材料类型: 文献, 互联网资源
文件类型: 互联网资源, 计算机文档
所有的著者/提供者: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
OCLC号码: 822868959
描述: 1 online resource (x, 170 pages) : illustrations (some color).
内容: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
丛书名: Lecture notes in mathematics (Springer-Verlag), 2069.
责任: David Futer, Efstratia Kalfagianni, Jessica Purcell.
更多信息:

摘要:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  再读一些...

评论

社评

出版商概要

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book 再读一些...

 
用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


Primary Entity

<http://www.worldcat.org/oclc/822868959> # Guts of surfaces and the colored Jones polynomial
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "822868959" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1191327994#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/515.946/e23/> ;
    schema:about <http://id.worldcat.org/fast/871593> ; # Complex manifolds
    schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/knoten> ; # Knoten
    schema:about <http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> ; # Niederdimensionale Topologie
    schema:about <http://id.worldcat.org/fast/940922> ; # Geometry, Hyperbolic
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/298709121> ; # Efstratia Kalfagianni
    schema:contributor <http://viaf.org/viaf/299020509> ; # Jessica Purcell
    schema:copyrightYear "2013" ;
    schema:creator <http://viaf.org/viaf/299410175> ; # David Futer
    schema:datePublished "2013" ;
    schema:description "This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1191327994> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:name "Guts of surfaces and the colored Jones polynomial"@en ;
    schema:productID "822868959" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/822868959#PublicationEvent/berlin_springer_2013> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1191327994#Agent/springer> ; # Springer
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3070786> ;
    schema:url <http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1> ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-33302-6> ;
    schema:url <http://site.ebrary.com/id/10656374> ;
    schema:workExample <http://worldcat.org/isbn/9783642333026> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/822868959> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1191327994#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/1191327994#Topic/niederdimensionale_topologie> # Niederdimensionale Topologie
    a schema:Intangible ;
    schema:name "Niederdimensionale Topologie"@en ;
    .

<http://id.worldcat.org/fast/871593> # Complex manifolds
    a schema:Intangible ;
    schema:name "Complex manifolds"@en ;
    .

<http://id.worldcat.org/fast/940922> # Geometry, Hyperbolic
    a schema:Intangible ;
    schema:name "Geometry, Hyperbolic"@en ;
    .

<http://viaf.org/viaf/298709121> # Efstratia Kalfagianni
    a schema:Person ;
    schema:familyName "Kalfagianni" ;
    schema:givenName "Efstratia" ;
    schema:name "Efstratia Kalfagianni" ;
    .

<http://viaf.org/viaf/299020509> # Jessica Purcell
    a schema:Person ;
    schema:familyName "Purcell" ;
    schema:givenName "Jessica" ;
    schema:name "Jessica Purcell" ;
    .

<http://viaf.org/viaf/299410175> # David Futer
    a schema:Person ;
    schema:familyName "Futer" ;
    schema:givenName "David" ;
    schema:name "David Futer" ;
    .

<http://worldcat.org/isbn/9783642333026>
    a schema:ProductModel ;
    schema:isbn "3642333028" ;
    schema:isbn "9783642333026" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/822868959> ; # Guts of surfaces and the colored Jones polynomial
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.