跳至内容
Guts of surfaces and the colored Jones polynomial 線上預覽
關閉線上預覽
正在查...

Guts of surfaces and the colored Jones polynomial

作者: David Futer; Efstratia Kalfagianni; Jessica Purcell
出版商: Berlin : Springer, ©2013.
叢書: Lecture notes in mathematics (Springer-Verlag), 2069.
版本/格式:   電子書 : 文獻 : 英語所有版本和格式的總覽
資料庫:WorldCat
提要:
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

主題
更多類似這樣的

 

在線上查詢

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

類型/形式: Electronic books
資料類型: 文獻, 網際網路資源
文件類型: 網路資源, 電腦資料
所有的作者/貢獻者: David Futer; Efstratia Kalfagianni; Jessica Purcell
ISBN: 3642333028 9783642333026
OCLC系統控制編碼: 822868959
描述: 1 online resource (x, 170 p.) : ill. (some col.)
内容: Introduction --
Decomposition into 3-Balls --
Ideal Polyhedra --
I-Bundles and Essential Product Disks --
Guts and Fibers --
Recognizing Essential Product Disks --
Diagrams Without Non-prime Arcs --
Montesinos Links --
Applications --
Discussion and Questions.
叢書名: Lecture notes in mathematics (Springer-Verlag), 2069.
責任: David Futer, Efstratia Kalfagianni, Jessica Purcell.
更多資訊:

摘要:

The monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. This book proves that the  再讀一些...

評論

社評

出版商概要

From the reviews: "A relationship between the geometry of knot complements and the colored Jones polynomial is given in this monograph. The writing is well organized and comprehensive, and the book 再讀一些...

 
讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個
確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


<http://www.worldcat.org/oclc/822868959>
library:oclcnum"822868959"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/822868959>
rdf:typeschema:Book
rdfs:seeAlso
schema:about
schema:about
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Niederdimensionale Topologie"
schema:about
schema:about
schema:author
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191327994>
schema:inLanguage"en"
schema:name"Guts of surfaces and the colored Jones polynomial"
schema:numberOfPages"170"
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-642-33302-6/page/1>
schema:url<http://dx.doi.org/10.1007/978-3-642-33302-6>
schema:url<http://site.ebrary.com/id/10656374>
schema:workExample
schema:workExample

Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.