skip to content
Hamiltonian Mechanics of Gauge Systems. Preview this item
ClosePreview this item
Checking...

Hamiltonian Mechanics of Gauge Systems.

Author: Lev V Prokhorov; Sergei V Shabanov
Publisher: Cambridge : Cambridge University Press, 2011.
Series: Cambridge monographs on mathematical physics.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Prokhorov, Lev V.
Hamiltonian Mechanics of Gauge Systems.
Cambridge : Cambridge University Press, ©2011
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Lev V Prokhorov; Sergei V Shabanov
ISBN: 9781139187992 1139187996 9780511976209 0511976208 9780521895125 052189512X 9781139190596 1139190598 9781139185684 1139185683
OCLC Number: 782877022
Language Note: English.
Notes: 3.3.1 The extended group of gauge transformations.
Description: 1 online resource (486 pages).
Contents: Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables. 1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures. 1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules. 2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk. 2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints.
Series Title: Cambridge monographs on mathematical physics.

Abstract:

An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

"It is definitely a first choice for anybody willing to learn constrained systems." Giuseppe Nardelli, Mathematical reviews

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/782877022> # Hamiltonian Mechanics of Gauge Systems.
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "782877022" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/504857802#Place/cambridge> ; # Cambridge
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   schema:about <http://id.worldcat.org/fast/938998> ; # Gauge invariance
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/geometry> ; # Geometry
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/science> ; # Science
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/science_waves_&_wave_mechanics> ; # SCIENCE--Waves & Wave Mechanics
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/mathematics> ; # Mathematics
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/physics> ; # Physics
   schema:about <http://dewey.info/class/530.1435/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/nuclear_physics> ; # Nuclear Physics
   schema:about <http://id.worldcat.org/fast/950772> ; # Hamiltonian systems
   schema:about <http://experiment.worldcat.org/entity/work/data/504857802#Topic/physical_sciences_&_mathematics> ; # Physical Sciences & Mathematics
   schema:bookFormat schema:EBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/504857802#Person/shabanov_sergei_v> ; # Sergei V. Shabanov
   schema:creator <http://experiment.worldcat.org/entity/work/data/504857802#Person/prokhorov_lev_v> ; # Lev V. Prokhorov
   schema:datePublished "2011" ;
   schema:description "An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics."@en ;
   schema:description "Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/504857802> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/504857802#Series/cambridge_monographs_on_mathematical_physics> ; # Cambridge monographs on mathematical physics.
   schema:isSimilarTo <http://worldcat.org/entity/work/data/504857802#CreativeWork/hamiltonian_mechanics_of_gauge_systems> ;
   schema:name "Hamiltonian Mechanics of Gauge Systems."@en ;
   schema:productID "782877022" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/782877022#PublicationEvent/cambridge_cambridge_university_press_2011> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/504857802#Agent/cambridge_university_press> ; # Cambridge University Press
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=807303> ;
   schema:url <http://site.ebrary.com/id/10521026> ;
   schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=409033> ;
   schema:url <http://www.myilibrary.com?id=338393> ;
   schema:url <http://dx.doi.org/10.1017/CBO9780511976209> ;
   schema:url <http://www.myilibrary.com?id=338393&ref=toc> ;
   schema:workExample <http://worldcat.org/isbn/9780511976209> ;
   schema:workExample <http://worldcat.org/isbn/9781139185684> ;
   schema:workExample <http://worldcat.org/isbn/9780521895125> ;
   schema:workExample <http://worldcat.org/isbn/9781139187992> ;
   schema:workExample <http://worldcat.org/isbn/9781139190596> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/782877022> ;
    .


Related Entities

<http://dx.doi.org/10.1017/CBO9780511976209>
   rdfs:comment "Access by subscription" ;
   rdfs:comment "Connect to e-book" ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
   schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Person/prokhorov_lev_v> # Lev V. Prokhorov
    a schema:Person ;
   schema:familyName "Prokhorov" ;
   schema:givenName "Lev V." ;
   schema:name "Lev V. Prokhorov" ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Person/shabanov_sergei_v> # Sergei V. Shabanov
    a schema:Person ;
   schema:familyName "Shabanov" ;
   schema:givenName "Sergei V." ;
   schema:name "Sergei V. Shabanov" ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Series/cambridge_monographs_on_mathematical_physics> # Cambridge monographs on mathematical physics.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/782877022> ; # Hamiltonian Mechanics of Gauge Systems.
   schema:name "Cambridge monographs on mathematical physics." ;
   schema:name "Cambridge Monographs on Mathematical Physics" ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Topic/physical_sciences_&_mathematics> # Physical Sciences & Mathematics
    a schema:Intangible ;
   schema:name "Physical Sciences & Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/504857802#Topic/science_waves_&_wave_mechanics> # SCIENCE--Waves & Wave Mechanics
    a schema:Intangible ;
   schema:name "SCIENCE--Waves & Wave Mechanics"@en ;
    .

<http://id.worldcat.org/fast/938998> # Gauge invariance
    a schema:Intangible ;
   schema:name "Gauge invariance"@en ;
    .

<http://id.worldcat.org/fast/950772> # Hamiltonian systems
    a schema:Intangible ;
   schema:name "Hamiltonian systems"@en ;
    .

<http://worldcat.org/entity/work/data/504857802#CreativeWork/hamiltonian_mechanics_of_gauge_systems>
    a schema:CreativeWork ;
   rdfs:label "Hamiltonian Mechanics of Gauge Systems." ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/782877022> ; # Hamiltonian Mechanics of Gauge Systems.
    .

<http://worldcat.org/isbn/9780511976209>
    a schema:ProductModel ;
   schema:isbn "0511976208" ;
   schema:isbn "9780511976209" ;
    .

<http://worldcat.org/isbn/9780521895125>
    a schema:ProductModel ;
   schema:isbn "052189512X" ;
   schema:isbn "9780521895125" ;
    .

<http://worldcat.org/isbn/9781139185684>
    a schema:ProductModel ;
   schema:isbn "1139185683" ;
   schema:isbn "9781139185684" ;
    .

<http://worldcat.org/isbn/9781139187992>
    a schema:ProductModel ;
   schema:isbn "1139187996" ;
   schema:isbn "9781139187992" ;
    .

<http://worldcat.org/isbn/9781139190596>
    a schema:ProductModel ;
   schema:isbn "1139190598" ;
   schema:isbn "9781139190596" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.