skip to content
The Handbook of surface imaging and visualization Preview this item
ClosePreview this item

The Handbook of surface imaging and visualization

Author: Arthur T Hubbard
Publisher: Boca Raton : CRC Press, ©1995.
Edition/Format:   Print book : EnglishView all editions and formats

This handbook investigates the characterization of surfaces. It emphasizes experimental techniques for imaging of solid surfaces and theoretical strategies for visualization of surfaces. It aims to  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Arthur T Hubbard
ISBN: 0849389119 9780849389115
OCLC Number: 32168441
Description: xv, 909 pages : illustrations (some color) ; 27 cm
Contents: ANGLE RESOLVED AUGER ELECTRON SPECTROSCOPY, D.G. FrankIntroductionAuger Electron Emission from Solid SurfacesThe Auger PhenomenonAngle-Resolved Auger Electron MeasurementsExperimental ConsiderationsAuger Electron KE and the "Secant Effect"Incident RadiationAngle-Resolving AnalyzersAuger Signal DetectionData VisualizationTheoretical ApproachesBasic PrinciplesEmpirical TrendsEmpirical Blocking ModelInelastic ScatteringElastic ScatteringExample ApplicationsDepth ProfilingMonolayer StructureBilayer StructureSingle CrystalsLayered CrystalsAcknowledgementsReferencesAtomic Force Microscopy, A.A. Gewirth and J.R. LaGraffIntroductionGeneral PrinciplesAFM OperationTip-Sample InteractionRepresentative ResultsElectrochemistryBiological SystemsSelf-Assembled Langmuir-Blodgett FilmsCrystal Dissolution and GrowthFuture ProspectsAcknowledgementReferencesAuger Electron Spectroscopy, N.H. TurnerIntroductionBasicsElemental IdentificationSurface SensitivityOverview of Spectral FeaturesInstrumentationVacuum SystemsElectron SourcesEnergy AnalyzersOther AccessoriesSpectral FeaturesMain Spectral FeaturesChargingQuantificationSummaryReferencesChemical Imaging Using Ion Microscopy, I. Gay and G.H. MorrisonIntroductionInstrumentationDetection and Image Acquisition SystemsQuantificationApplications of Ion MicroscopyMaterials Science and GeologyBiology and MedicineConclusionsAcknowledgementsReferencesCollision Induced Surface Processes, S.T. CeyerIntroductionExamples of Collision Induced Surface ProcessesTranslational ActivationCollision Induced ActivationCollision Induced DesorptionCollision Induced AbsorptionCollision Induced Recombinative DesorptionSignficance of Collision Induced Surface ProcessesReferencesDepth Profiling, G.B. HoflundIntroductionThe Ion Sputtering ProcessPure MaterialsMulticomponent SolidsReferencesElectrochemical Epitaxy, H.M. Baoming, T.E. Lister, and J.L. StickneyIntroductionExperimentalElectrochemical Atomic Layer EpitaxyAcknowledgementsReferencesElectrochemical Nucleation, R. de LevieThe Energetics of NucleationThe Thermodynamics of Nucleated Monolayer FilmsThe Kinetics of NucleationGrowthOverlapExperimental ObservationsMetal DepositionThe Formation of Salt LayersCondensation of Adsorbate FilmsRelevance for Studies at the Metal-Vacuum InterfaceGeneral ReferencesElectrochemical Quartz Crystal Microbalance Studies of Electroactive Surface Films, S. Bruckenstein and R. HillmanPrinciples of the Quartz Crystal MicrobalanceIn situ Application: The Electrochemical Quartz Crystal MicrobalanceChemical PrinciplesChemical SystemsPolymer FilmsMetal Oxide FilmsOther SystemsFuture ProspectsAbsolute Measurement of Solvent ContentCrystal Impedance ModelingSurface MorphologySummaryReferencesElectron Beam Lithography, F.J. HohnIntroductionClasses of Electron Beam Lithography ToolsGaussian Round Beam SystemsVariable Shape Beam SystemsPerformance LimitationsResolutionAccuracyElectron Beam Lithography-Integration ConsiderationsProximity EffectElectron Beam Lithography ApplicationsApplication EmphasisApplication for Nano-DevicesSummaryReferencesElectron Microscopy, J.M. CowleyIntroductionThe Scattering of High Energy Electrons by MatterInstruments for Electron MicroscopyUse of Electron Microscopes for Surface StudiesTransmission Electron MicroscopyPlan-View Diffraction and ImagingProfile ImagingTransmission Electron HolographyReflection Electron Microscopy (REM)RHEED and REMContrast and Resolution in REMScanning Reflection Electron MicroscopyReflection Electron Energy-Loss AnalysisReflection Electron HolographyImaging with Secondary RadiationSecondary Electron MicroscopyScanning Auger MicroscopyX-Ray EmissionSpecial TopicsUHV InstrumentsVery Low Voltage Electron HolographyConclusionsReferencesElectron Stimulated Desorption-Ion Angular Distribution (ESDIAD), J.T. Yates, Jr.IntroductionThe ESDIAD PhenomenonThe ESDIAD Measurement TechniqueSelected Examples of ESDIAD Measurements on Metal and Semiconductor SurfacesChemisorption on a Metal SurfaceChemisorption on a Semiconductor SurfaceFuture DirectionsAcknowledgementsReferencesField Emission Ion Sources for Focused Ion Beams, J. OrloffIntroductionField Emission ProcessField IonizationField EvaporationLiquid Metal Ion SourcesProperties of Field Emission Ion SourcesGas Phase Field Ionization SourcesLiquid Metal Ion SourcesImplications for Focused Ion Beam FormationReferencesField Emission Microscopy, J.J. Hren and J. LiuSurface Electron MicroscopiesField Electron EmissionField Emission MicroscopyField Emission from CrystalsThe Theoretical Resolution of FEMPractical FEMThe FEM of Absorbed MoleculesCombining Field Emission and Field Ion MicroscopyReferencesField-Ion Microscopy and Spectroscopy, G. Ehrlich and N. ErnstHistorical IntroductionThe Field Ion MicroscopeSelected ApplicationsFIM VariantsThe Atom ProbeField Ion Appearance Energy SpectroscopySummaryAcknowledgementsReferencesFluid-Fluid Interfaces: Optical Imaging of Capillary Systems, A.D. Nikolov and D.T. WasanIntroductionImaging a Profile of a Fluid by Light Interference PhenomenaReflection InterferometryDifferential InterferometryFilm Thickness InterferometryImaging the Film Structure by Using Diffractive Scattering PhenomenaImaging Film Structure by Small Angle DiffractionImaging Film Structure by Background Light Scattering DiffractionImaging Film Structure by Light ScatteringAcknowledgementsReferencesFullerenes Viewed by Scanning Tunneling Microscopy, Photoemission, and Inverse Photoemission, J.H. WeaverIntroductionSTM of Fullerene FilmsElectron Spectroscopy of FullerenesC60 Valence and Conduction BandsC84 and Graphite Valence BandsC 1s Satellites and Plasmons for C60, C84, and GraphiteSummaryAcknowledgementsReferencesHigh Resolution Electron Energy Loss Spectroscopy, L.L. KesmodelIntroductionExperimental ApparatusTheoryDipole Scattering Impact ScatteringResonance ScatteringExamplesApplicationsSupported Catalysts (Metal Clusters)Characterization of Insulators for Silicon TechnologyPolar Materials: OxidesPolymer SurfacesReferencesImaging of Colliodal Particles, E. MatijevicIntroductionPreparation of Uniform ColloidsSpherical Colloidal ParticlesCoated and Hollow ParticlesColloidal Particles of Other ShapesReferencesInfrared Attenuated Total Reflection Spectroscopy of Surface Active Species, R.P. Sperline and H. FreiserIntroductionOverviewResearch ObjectivesSpectra of Adsorbates on Coated OpticsAdsorbate Orientation Studies Using Coated OpticsAdvantages and Feasibility of ATRLiterature Applications of ATRSelf-Assembled Mono-/Bi-LayersExperimental ApproachSpectra of the Surfactants ThemselvesProbes Molecules for Film StructureMaterials and EquipmentInfrared Spectroscopy of Surfaces, J. BenzigerIntroductionPrinciples of Infrared AbsorptionTypes of SpectrometersTransmission SpectroscopyMetal OxidesSupported MetalsReflection SpectroscopyExternal ReflectionSurface KineticsInternal ReflectionOther TechniquesDiffuse ReflectancePhotoacoustic and Photothermal DeflectionEmission SpectroscopySummary of Surface Infrared TechniquesReferencesLangmuir--Blodgett Films, A. UllmanIntroductionLB Films of Long-Chain Fatty AcidsLB Films of Liquid-Crystalline AmphiphilesLB Films of Porphyrins and PhthalocyaninesLB Films of Polymerizable AmphiphilesLB Films of Polymeric AmphiphilesPotential Applications of LB FilmsReferencesLEED Pattern Directory, D.G. FrankIntroduction and TheoryIntroductionExperimentalBasic PrinciplesSurface Dimensions from LEED PatternsReferencesHexagonal Surface TabulationsTable of All Unit-CellsTable of Primitive Unit-CellsTable of Structures and LEED PatternsLow-Energy Electron Diffraction: Some Basic Conceptual Tools, P.A. ThielIntroductionDefinition of k and sThe Bragg Condition for a One-Dimensional Periodic LatticeThe Laue Condition for a One-Dimensional Periodic LatticeReciprocal Space VectorsThe Ewald ConstructionThe Typical LEED ExperimentDiffraction Profile as a Function of Island SizeDiffraction Profile in Terms of the Pair Correlation FunctionAcknowledgementsReferencesLow-Energy Electron Microscopy, E. BauerClean Surfaces: Morphology, Phase Transitions, Growth, SublimationAbsorption, Segregation, ReactionsThin Films: Growth, Structural Transitions, and The Interaction of Slow Electrons with MatterLow-Energy Electron MicroscopesResolution and ContrastApplicationsDesorptionMagnetic MicrostructureOutlookReferencesLow Energy Ion Scattering Spectroscopy, S.H. OverburyIntroductionTechniquesFundamental Concepts in Ion ScatteringApplication to Surface Imaging and VisualizationAcknowledgementReferencesMagnetism in Low Dimensional Systems: Magnetic Properties of Thin Films, R. Wu, D. Wang, and A.J. FreemanSummaryIntroductionMagnetic Moment Enhancement in Low-Dimensional SystemsTransition MetalsRare Earth Metal Surface: Gd(0001)Interfacial Effects3d Overlayers on Inert Substrates3d Overlayers on Transition Metal Substrates Possibility to Realize 4d MagnetismFermi-Contact Hyperfine FieldSpin Density at the Fermi LevelMagneto-Crystalline AnisotropyMagneto-Optical EffectsSmokeMagneitc Circular X-Ray DichroismConclusionAcknowledgementsReferencesMetal Clusters on Oxides, X. Xu and D.W. GoodmanIntroductionPreparation of Metal Clusters on an Oxide SupportMetal Cluster PropertiesCohesive EnergySizeStructureCatalytic ActivityCluster-Oxide InteractionsConclusionAcknowledgementReferencesMetal Surface Reconstructions, P.A. Thiel and P.J. EstrupIntroductionStructural Features of Known ReconstructionsClean Surface TransformationsAdsorbate-Induced TransformationsDriving ForceGeneral RemarksClean Surface TransformationsAdsorbate or Field-Induced TransformationsMechanismGeneral RulesCO on Pt(100)Oxygen-Induced Added-Row ReconstructionsPhase Formation on W(100) and Mo(100)SummaryAcknowledgementsReferencesMolecular Beam Epitaxy, C.W. TuIntroductionIn situ Monitoring and ControlRHEEDReflection and Desorption Mass SpectroscopyPyrometric InterferometryGas SourcesGrowth BehaviorAlternative SourcesCarbon-Doped p-Type GaAs and InGaAs by HalomethanesConcluding RemarksAcknowledgementsReferencesMolecular Beam Scattering: Diffraction, T. EngelAdvantages and Limits of the Utility of Atomic and Molecular Beam DiffractionExperimental AspectsUsing Atom Diffraction to Obtain Atomic Structure within the Unit CellAtom Diffraction as a Probe of Surface DefectsAtom Diffraction as a Probe of Surface Phase Transitions: The Roughing TransitionAtom Diffraction as a Probe of Heteroepitaxial Growth: Metals on MetalsA Broader Framework and Outlook for the FutureReferencesMolecular Beam Scattering: Reactive Scattering, S.L. BernasekIntroduction to the TechniqueExperimental AspectsKinetic/Mechanistic StudiesDynamic StudiesConclusions and Prospects for the FutureReferencesMolecular Orbital Theory of Surfaces, A.B. AndersonIntroductionHow Surface Structures Are Calculated Using Molecular Orbital TheoryHow Molecular Orbital Calculations Relate to Ionization, Optical, and Vibrational Spectroscopic DataSurface Models for Molecular Orbital CalculationsMethods of Molecular Orbital CalculationsConcluding CommentAcknowledgementsReferencesMolecular Orientation, M.P. Soriaga and R.J. BarrigaIntroductionDetermination of Adsorbate Molecular OrientationDetermination Based upon a Comparison of Measured and Calculated Molecular Cross SectionsDeterminations Based upon Surface SpectroscopyNature of Adsorbate Molecular OrientationsReversible Adsorption: Adsorption IsothermsIrreversible Adsorption: Surface Chemical BondingAcknowledgementsReferencesMonitoring Surface Chemistry with Optical Second Harmonic Generation, R.M. Corn and D.A. HigginsIntroductionExperimental ConsiderationsExamples of SHG Surface StudiesAdsorption and Surface Coverage MeasurementsMolecular Orientation MeasurementsSurface Symmetry MeasurementsElectric Field MeasurementsTime Resolved StudiesFuture DirectionsAcknowledgementsReferencesMonolayer Surface Structures, G.A. Somorjai and J.D. BatteasThe Importance of Monolayer Surface StructuresTechniques for the Determination of Monolayer StructuresLow Energy Electron DiffractionPhoton Scattering and DiffractionScattering and Diffraction of Atoms and IonsScanning Probe MicroscopiesClean Surfaces, Relaxations, and ReconstructionsAtomic Adsorption on MetalsMolecular Overlayers on MetalsThe Co-adsorption PhenomenaThe Nature of Surface Chemical BondingAn OutlookAppendix I: Surface Structure NotationReferencesMoessbauer Effect Spectroscopy, D.A. SchersonNuclear Magnetic Resonance, J.F. HawBrief Description of the Method: Advantages and LimitationsExperimental AspectsMES as a Probe of a Passive FilmMES as a Probe of an Electrochromic FilmMES as a Probe of an Electrocatalytic Mixed Metal Hydrous Oxide FilmReferencesIntroductionSpin CountingRelaxation Time MeasurementsChemical Shift SpectroscopyBroad Line StudiesPulsed Field Gradient Measurements of DiffusionMagnetic Resonance ImagingIn Situ NMR of Reactions on SurfacesFuture ProspectsConcluding RemarksReferencesOptical Holographic Imaging, E.N. LeithIntroductionTheoryGabor HologramOff-Axis MethodPhase ConjugationComplex Spatial FilteringHolographic InterferometryHolographic Optical ElementsDisplay HolographyIntroductionVolume HologramRainbow HologramIntegral HologramConcluding CommentsReferencesOptical Imaging of Particles, B.J. ThompsonIntroductionIncoherent ImagingImage Space ParametersObject Space ParametersSystem with Constant MagnificationsCoherent ImagingHolographic ImagingHologram of a Single ParticleImage Formation from the HologramSystem Design ConsiderationsOther Methods using HolographyConclusionsReferencesOptically Detected Electron Spin Resonance of Aromatic Ketones Adsorbed on Surfaces, A.M. NishimuraIntroductionExperimentalResults and Discussion: Al2O3; Ag; and Molecular CrystalsReferencesOrganic Molecular Beam Epitaxy, N.R. ArmstrongGeneral Description of the OMBE ProcessExperimental AspectsEpitaxial Layer Growth of Large Organic Molecules-The First MonolayerEpitaxial Layer Frowth of Large Organic Molecules-Multilayer FormationProspects for the Future of OMBEReferencesPhotoelectron Emission Microscopy, M.E. KordeschIntroductionClassificationCharacteristics/RequirementsAreas of ApplicationMicroscope FunctionPrinciples of OperationImage CompositionMicroscopesEarly MicroscopesIntegrated Surface Science MicroscopesSynchrotron Radiation MicroscopesApplicationsIn Situ Surface ChemistryMaterials AnalysisRelated TechniquesAcknowledgementsReferences and BibliographyPicosecond Luminescence Studies of Recombination Dynamics at GaAs/Electrolyte Interfaces, G.L. Richmond, J.F. Kauffman, and B.A. BalkoIntroductionAnalysis of Photoluminescence DataModelling Potential Dependent Photoluminescence Using the Dead LayerModelling Photoluminescence DecaysExperimental ConsiderationsResults and DiscussionPotential Dependent Studies of Photoluminescence IntensityPhotoluminescence Decay MeasurementsLuminescence Decays as a Function of Applied PotentialPhotocorrosion StudiesSummaryAcknowledgementsReferencesPositron Annihilation Induced Auger Electron Spectroscopy, A. WeissIntroductionThe PAES MechanismPAES ApparatusSecondary Electron Background EliminationSurface SensitivityTheoretical CalculationsPAES IntensitiesMeasurement of the Temperature Dependence of PAESApplications of PAESStudies of Metal OverlayersPd Films on Cu(100)RH on AgAu on SiSome ComplicationsFuture PAES ResearchBackground Free Line Shape MeasurementsPolarized Positron Annihilation Induced Auger Electron Spectroscopy Spin Polarized Positron Annihilation Induced Auger SpectroscopyPAES MicroprobeAcknowledgementsReferencesRadiotracer Study of Electrode Surfaces, M. Gamboa-Aldeco, K. Franaszszuk, and A. WieckowskiGeneral Description of the MethodPrinciples of Operation Radiochemical-Electrochemical Cell DesignsThin-Foil (Film) MethodThin-Gap MethodEvaluation of Experimental ErrorApplications and Illustrations of the MethodAcknowledgementsReferencesRaman Spectroscopy of Surfaces, J.E. PembertonIntroductionFundamentals of Raman SpectroscopyInstrumental ConsiderationsA Brief History of surface Raman SpectroscopySurface Enhanced Raman Scattering(SERS) Normal Raman Surface ScatteringIntegrated Optical Waveguide Raman SpectroscopyTotal Internal Reflection SpectroscopyResonance Raman SpectroscopyPlasmon Surface Polariton Enhanced Raman SpectroscopySurface Selection RulesSelected Examples of Raman Scattering on Metal SurfacesSurface Raman Scattering in Electrochemical SystemsSelf-Assembled MonolayersThe Future of Surface Raman SpectroscopyAcknowledgementsReferencesScanning Electrochemical Microscopy, A.J. Bard, F.-R.F. Fan, and M.V. MirkinIntroductionInstrumentationBasic ApparatusTip PreparationTheory of the SECMApplicationsSECM ImagesStudies of Heterogeneous Kinetics at Substrate and Tip SurfacesProbing Interfacial FilmsPotentiometric ProbesReferencesScanning Tunneling Microscopy of Electrode Surfaces in Situ, K. ItayaElectrochemical Scanning Tunneling MicroscopyWell-Defined Electrode-Electrolyte InterfacesMetal ElectrodesSemiconductor ElectrodesConclusionsReferencesScanning X-Ray Photoelectron Microscopy (SXPEM), G.A. Garwood, Jr.Introduction and OverviewPurpose of ChapterSXPEM in ContextScope of ChapterInstruction in SXPEMTutorial on TechniqueInstrumental AspectsPotpourri of ApplicationsInside the LiteratureGeneral GuideSpecific ReferencesLandmarks and MilestonesInstruments and ApplicationsScan AnalyzerX-Ray MicroprobeParallel-DirectOther ApproachesImminent ProspectsInnovations and ImprovementsIntegration and SynergismAcknowledgementsReferencesSecondary Ion Mass Spectrometry, J.A. Gardella, Jr.Overview of the SIMS ExperimentsInformation Sought from SIMS ExperimentsDynamic SIMSStaticThe Study of Thin Organic FilmsThe Study of Polymers and Polymer SurfacesImaging Static SIMS of Organic Surface ChemistryAnalysis of Buried Organic InterfacesProspects for Future ApplicationsReferencesSelf-Assembled Monolayers: Models for Organic Surface Chemistry, G.M. Whitesides and C.B. GormanIntroductionPreparations and Types of Self-Assembled MonolayersStructural CharacterizationMaterials PropertiesPatterning of Self-Assembled MonolayersContact PrintingMicro-WritingMicro-MachiningPhotolithographyElectron-Beam WritingApplicationsWettingSubstrates for Surface SpectroscopyElectrochemistryMicro-Lithography and Nanometer ResistsAdhesionCorrosionTribologyAttachment of ProteinsAttachment of CellsElectrochemical SensorsNon-Electrochemical SensorsMultilayer Systems for Optical CoatingsConclusionsAcknowlegementReferencesSelf-Assembled Monolayers: Models of Organic Interfaces, M.D. Porter and M.M. WalczakIntroductionSulfur-Containing Compounds at GoldGeneral DetailsWettability and AdhesionBarrier PropertiesManipulation of ReactionsSelf-Assembly of Multilayer FilmsFuture DirectionsAcknowledgementsReferencesSemiconductor Thin Film Growth Dynamics during Molecular Beam Epitaxy, B.A. JoyceIntroductionGrowth Kinetics of III-V Compounds from Elemental SourcesStep Propagation RatesStep Density VariationAnisotropic EffectsSurface Relaxation EffectsOther Experimental ApproachesGrowth of GaAs on GaAs (110) SurfacesGrowth Dynamics of Strained LayersAcknowledgementsReferencesSum Frequency Generation Studies of Bonding and Reaction at Interfaces, R.B. HallIntroductionTheoryExperimental MethodsExperimental ResultsVibrational Spectra of Adsorbates at Dielectric InterfacesVibrational Spectra of Adsorbates at Metal and Semiconductor InterfacesElectronic Structure at Solid/Solid InterfacesOverview and Outlook for the FutureReferencesSurface Catalysis on Metals, F.H. Ribeiro and G.A. SomorjaiIntroductionDefinitions and Important Topics in CatalysisDefinition of CatalysisTransition Metals are Good CatalystsUnderstanding Catalysis by Theoretical ApproachesTurnover Rate and SelectivitySensitivity of Reactions to Catalyst StructureCatalytic SurfacesCatalysis is to be Studied Under Reaction ConditionsAdsorbed Species Under Reaction ConditionsCharacterization of CatalystsKineticsModification of Catalytic Properties by AdditivesThe FrontiersReferencesSurfaced Enhanced Raman Spectroscopy of Flexible Molecules, R.L. GarrellIntroductionBackgroundExperimental AspectsSelection Rules and Spectral AnalysisApplicationsSimple Molecules and SurfactantsBiological MoleculesPolymersOutlookReferencesSurface Forces, J.N. IsraelachviliIntroductionForce-Measuring TechniquesAdhesion ForcesForce LawsThe Surface Force Apparatus (SFA) and Atomic Force Microscope (AFM)Van der Waals ForcesElectrostatic ForcesSolvation ForcesEffects of Surface StructureEffect of Surface Curvature and GeometrySteric Thermal Fluctuation ForcesHydration ForcesRepulsive Hydration ForcesAttractive Hyrophobic ForcesOrigin of Hydration ForcesAdhesion and Capillary ForcesAdhesion MechanicsNon-Equilibrium InteractionsSpecific InteractionsBridging ForcesLigand-Receptor InteractionsConcluding RemarksAcknowledgementsReferencesThermal Desorption Mass Spectrometry, C.N. Chittenden, E.D. Pylant, A.L. Schwaner, and J.M. WhiteIntroductionExperimental IssuesSurface Preparation and CharacterizationMolecular DosingAdsorbate Coverage Determination Heating Methods, Uniformity, and RatesMeasurements that Complement TPDAnalysis of TPD Spectra-Modeling KineticsRedhead's Method of Peak AnalysisLeading Edge AnalysisChan-Aris-Weinberg AnalysisDesorption Trace AnalysisComplete AnalysisExamples of TPD Analysis MethodsAcknowledgementsReferencesTunneling Spectroscopy, B. ParkinsonBackgroundVoltage Dependent STM ImagingModulation TechniquesLocal I-V MeasurementsOther Spectroscopic TechniquesOverviewReferencesVibrational Microspectroscopy for the Analysis of Surfaces and Particles on Surfaces, P.L. LangChapter PurposeThe Study of Microscopic Regions on SurfacesAdsorbate Orientation StudyTribology StudyCharacterization of Surface ContaminantsIdentification of Pigments on Historic ArtifactsSurface ProfilingStudy of Catalyst SurfaceStudy of Stress TransferTwo-Dimensional Study of Phase TransformationDepth ProfilingCross-Sectioning and Physical Removal of LayersStep-Wise Adjustment of FocusSampling Convenience and Control of Experimental ConditionsControl of Pressure and TemperatureReduction of Sample QuantityEase of UseSummaryReferencesX-Ray Photoelectron Diffraction, Y.U. IdzerdaIntroductionThe XPD MeasurementData RepresentationFinal-Site EffectsEmitted Electron Angular MomentumMagnetic Quantum NumbersNon-Statistical Initial m-LevelsNon-Statistical Final m-LevelsConclusionsAcknowledgementsReferencesX-Ray Photoelectron Spectroscopy, P.M.A. SherwoodIntroductionThe Information Provided by XPSInstrumentation for XPSObtaining Accurate Electron Binding EnergiesSurface SensitivityData Analysis and Instrument ControlChemical Information from Core XPSChemical Information from Valence Band XPSConcluding CommentsReferencesX-Ray Standing Waves on Surfaces, H.D. AbrunaIntroductionX-Ray Standing Waves Based on Bragg ReflectionTotal External Reflection X-Ray Standing WavesExperimental AspectsData AnalysisSelected ExamplesBromine Adsorption on Si (220)Packing Density and Potential Dependent Distributional Changes of Iodine on PtX-Ray Standing Wave Study of a Langmuir-Blodgett Multilayer FilmConclusionsAcknowledgementsReferences
Responsibility: edited by Arthur T. Hubbard.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # The Handbook of surface imaging and visualization
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "32168441" ;
    library:placeOfPublication <> ;
    library:placeOfPublication <> ; # Boca Raton
    schema:about <> ; # Spectroscopie
    schema:about <> ; # Spectrum Analysis
    schema:about <> ;
    schema:about <> ; # Oberflächenphysik
    schema:about <> ; # Surface Properties
    schema:about <> ; # Surfaces (technologie)
    schema:about <> ; # Surfaces (Technology)--Analysis
    schema:about <> ; # Surfaces (Technology)--Analysis
    schema:about <> ; # Surface chemistry
    schema:about <> ; # Tratamento de superfícies
    schema:about <> ; # Visualisierung
    schema:about <> ; # Surfaces
    schema:about <> ; # Spectroscopic imaging
    schema:about <> ; # Oberflächeneigenschaft
    schema:about <> ; # Chimie des surfaces
    schema:about <> ; # Oberflächenchemie
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <> ; # Arthur T. Hubbard
    schema:copyrightYear "1995" ;
    schema:datePublished "1995" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:name "The Handbook of surface imaging and visualization"@en ;
    schema:productID "32168441" ;
    schema:publication <> ;
    schema:publisher <> ; # CRC Press
    schema:url <> ;
    schema:workExample <> ;
    umbel:isLike <> ;
    wdrs:describedby <> ;

Related Entities

<> # Chimie des surfaces
    a schema:Intangible ;
    schema:name "Chimie des surfaces"@en ;

<> # Oberflächenchemie
    a schema:Intangible ;
    schema:name "Oberflächenchemie"@en ;

<> # Oberflächeneigenschaft
    a schema:Intangible ;
    schema:name "Oberflächeneigenschaft"@en ;

<> # Oberflächenphysik
    a schema:Intangible ;
    schema:name "Oberflächenphysik"@en ;

<> # Spectrum Analysis
    a schema:Intangible ;
    schema:name "Spectrum Analysis"@en ;

<> # Surface Properties
    a schema:Intangible ;
    schema:name "Surface Properties"@en ;

<> # Surfaces (technologie)
    a schema:Intangible ;
    schema:name "Surfaces (technologie)"@en ;

<> # Tratamento de superfícies
    a schema:Intangible ;
    schema:name "Tratamento de superfícies"@en ;

<> # Surfaces (Technology)--Analysis
    a schema:Intangible ;
    schema:name "Surfaces (Technology)--Analysis"@en ;

<> # Spectroscopic imaging
    a schema:Intangible ;
    schema:name "Spectroscopic imaging"@en ;

<> # Surface chemistry
    a schema:Intangible ;
    schema:name "Surface chemistry"@en ;

<> # Surfaces (Technology)--Analysis
    a schema:Intangible ;
    schema:name "Surfaces (Technology)--Analysis"@en ;

<> # Arthur T. Hubbard
    a schema:Person ;
    schema:familyName "Hubbard" ;
    schema:givenName "Arthur T." ;
    schema:name "Arthur T. Hubbard" ;

    a schema:ProductModel ;
    schema:isbn "0849389119" ;
    schema:isbn "9780849389115" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.