přejít na obsah
Handling missing data in ranked set sampling Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Handling missing data in ranked set sampling

Autor Carlos Narciso Bouza Herrera
Vydavatel: Heidelberg : Springer, 2013.
Edice: SpringerBriefs in statistics
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design.  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Carlos Narciso Bouza Herrera
ISBN: 9783642398995 3642398995 3642398987 9783642398988
OCLC číslo: 861744903
Popis: 1 online resource (x, 116 pages).
Obsahy: Missing observations and data quality improvement --
Sampling using ranked sets: basic concepts --
The non-response problem: subsampling among the non-respondents --
Imputation of the missing data --
Some numerical studies of the behavior of RSS.
Název edice: SpringerBriefs in statistics
Odpovědnost: Carlos N. Bouza-Herrera.
Více informací:

Anotace:

The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments.

Recenze

Recenze redakce

Souhrn od vydavatele

From the reviews: "This monograph treats missing data due to non-inclusion of units in the sampling frame (non-coverage) or to individual non-responses in theoretical 'ranked set sampling' framework. Přečíst více...

 
Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/861744903>
library:oclcnum"861744903"
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
<http://viaf.org/viaf/305198762>
rdf:typeschema:Person
schema:birthDate"1942"
schema:familyName"Bouza Herrera"
schema:givenName"Carlos Narciso"
schema:name"Bouza Herrera, Carlos Narciso, 1942-"
schema:datePublished"2013"
schema:description"The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1784230739>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Handling missing data in ranked set sampling"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647456>
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.