omitir hasta el contenido
Handling missing data in ranked set sampling Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Handling missing data in ranked set sampling

Autor: Carlos Narciso Bouza Herrera
Editorial: Heidelberg : Springer, 2013.
Serie: SpringerBriefs in statistics
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design.  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Carlos Narciso Bouza Herrera
ISBN: 9783642398995 3642398995 3642398987 9783642398988
Número OCLC: 861744903
Descripción: 1 online resource (x, 116 pages).
Contenido: Missing observations and data quality improvement --
Sampling using ranked sets: basic concepts --
The non-response problem: subsampling among the non-respondents --
Imputation of the missing data --
Some numerical studies of the behavior of RSS.
Título de la serie: SpringerBriefs in statistics
Responsabilidad: Carlos N. Bouza-Herrera.
Más información:

Resumen:

The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments.

Reseñas

Reseñas editoriales

Resumen de la editorial

From the reviews: "This monograph treats missing data due to non-inclusion of units in the sampling frame (non-coverage) or to individual non-responses in theoretical 'ranked set sampling' framework. Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/861744903>
library:oclcnum"861744903"
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
<http://viaf.org/viaf/305198762>
rdf:typeschema:Person
schema:birthDate"1942"
schema:familyName"Bouza Herrera"
schema:givenName"Carlos Narciso"
schema:name"Bouza Herrera, Carlos Narciso, 1942-"
schema:datePublished"2013"
schema:description"The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1784230739>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Handling missing data in ranked set sampling"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647456>
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.