aller au contenu
Handling missing data in ranked set sampling Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérification...

Handling missing data in ranked set sampling

Auteur : Carlos Narciso Bouza Herrera
Éditeur : Heidelberg : Springer, 2013.
Collection : SpringerBriefs in statistics
Édition/format :   Livre électronique : Document : EnglishVoir toutes les éditions et tous les formats
Base de données :WorldCat
Résumé :
The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design.  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Genre/forme : Electronic books
Format – détails additionnels : Print version:
Bouza-Herrera, Carlos N.
Handling Missing Data in Ranked Set Sampling.
Dordrecht : Springer, ©2013
Type d’ouvrage : Document, Ressource Internet
Format : Internet Resource, Computer File
Tous les auteurs / collaborateurs : Carlos Narciso Bouza Herrera
ISBN : 9783642398995 3642398995 3642398987 9783642398988
Numéro OCLC : 861744903
Description : 1 online resource (x, 116 pages).
Contenu : Missing observations and data quality improvement --
Sampling using ranked sets: basic concepts --
The non-response problem: subsampling among the non-respondents --
Imputation of the missing data --
Some numerical studies of the behavior of RSS.
Titre de collection : SpringerBriefs in statistics
Responsabilité : Carlos N. Bouza-Herrera.

Résumé :

The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments.

Critiques

Critiques éditoriales

Synopsis de l’éditeur

From the reviews: "This monograph treats missing data due to non-inclusion of units in the sampling frame (non-coverage) or to individual non-responses in theoretical 'ranked set sampling' framework. Lire la suite...

 
Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Étiquettes

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


Primary Entity

<http://www.worldcat.org/oclc/861744903> # Handling missing data in ranked set sampling
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "861744903" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/statistical_theory_and_methods> ; # Statistical Theory and Methods
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/statistics> ; # Statistics
    schema:about <http://id.worldcat.org/fast/1104676> ; # Sampling (Statistics)
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS--Probability & Statistics--General
    schema:about <http://dewey.info/class/519.52/e23/> ;
    schema:about <http://id.worldcat.org/fast/1012127> ; # Mathematical statistics
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/mathematics_applied> ; # MATHEMATICS--Applied
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/stichprobennahme> ; # Stichprobennahme
    schema:about <http://experiment.worldcat.org/entity/work/data/1784230739#Topic/rangstatistik> ; # Rangstatistik
    schema:author <http://viaf.org/viaf/305198762> ; # Carlos Narciso Bouza Herrera
    schema:bookFormat schema:EBook ;
    schema:datePublished "2013" ;
    schema:description "The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1784230739> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/2191-544X> ; # SpringerBriefs in statistics,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1784230739#CreativeWork/handling_missing_data_in_ranked_set_sampling> ;
    schema:name "Handling missing data in ranked set sampling"@en ;
    schema:productID "861744903" ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-39899-5> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=1466336> ;
    schema:url <http://libproxy.uwinnipeg.ca/login?url=http://dx.doi.org/10.1007/978-3-642-39899-5> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647456> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-642-39899-5> ;
    schema:workExample <http://worldcat.org/isbn/9783642398988> ;
    schema:workExample <http://worldcat.org/isbn/9783642398995> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/861744903> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1784230739#Topic/mathematics_applied> # MATHEMATICS--Applied
    a schema:Intangible ;
    schema:name "MATHEMATICS--Applied"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1784230739#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS--Probability & Statistics--General
    a schema:Intangible ;
    schema:name "MATHEMATICS--Probability & Statistics--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1784230739#Topic/statistical_theory_and_methods> # Statistical Theory and Methods
    a schema:Intangible ;
    schema:name "Statistical Theory and Methods"@en ;
    .

<http://id.worldcat.org/fast/1012127> # Mathematical statistics
    a schema:Intangible ;
    schema:name "Mathematical statistics"@en ;
    .

<http://id.worldcat.org/fast/1104676> # Sampling (Statistics)
    a schema:Intangible ;
    schema:name "Sampling (Statistics)"@en ;
    .

<http://viaf.org/viaf/305198762> # Carlos Narciso Bouza Herrera
    a schema:Person ;
    schema:birthDate "1942" ;
    schema:familyName "Bouza Herrera" ;
    schema:givenName "Carlos Narciso" ;
    schema:name "Carlos Narciso Bouza Herrera" ;
    .

<http://worldcat.org/entity/work/data/1784230739#CreativeWork/handling_missing_data_in_ranked_set_sampling>
    a schema:CreativeWork ;
    rdfs:label "Handling Missing Data in Ranked Set Sampling." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/861744903> ; # Handling missing data in ranked set sampling
    .

<http://worldcat.org/isbn/9783642398988>
    a schema:ProductModel ;
    schema:isbn "3642398987" ;
    schema:isbn "9783642398988" ;
    .

<http://worldcat.org/isbn/9783642398995>
    a schema:ProductModel ;
    schema:isbn "3642398995" ;
    schema:isbn "9783642398995" ;
    .

<http://worldcat.org/issn/2191-544X> # SpringerBriefs in statistics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/861744903> ; # Handling missing data in ranked set sampling
    schema:issn "2191-544X" ;
    schema:name "SpringerBriefs in statistics," ;
    schema:name "SpringerBriefs in Statistics," ;
    .


Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Dont have an account? You can easily créez un compte gratuit.