コンテンツへ移動
Handling missing data in ranked set sampling 資料のプレビュー
閉じる資料のプレビュー
確認中…

Handling missing data in ranked set sampling

著者: Carlos Narciso Bouza Herrera
出版: Heidelberg : Springer, 2013.
シリーズ: SpringerBriefs in statistics
エディション/フォーマット:   電子書籍 : Document : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design.  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

ジャンル/形式: Electronic books
資料の種類: Document, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: Carlos Narciso Bouza Herrera
ISBN: 9783642398995 3642398995
OCLC No.: 861744903
物理形態: 1 online resource (x, 116 pages).
コンテンツ: Missing observations and data quality improvement --
Sampling using ranked sets: basic concepts --
The non-response problem: subsampling among the non-respondents --
Imputation of the missing data --
Some numerical studies of the behavior of RSS.
シリーズタイトル: SpringerBriefs in statistics
責任者: Carlos N. Bouza-Herrera.
その他の情報:

概要:

The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments.

レビュー

編集者のレビュー

出版社によるあらすじ

From the reviews: "This monograph treats missing data due to non-inclusion of units in the sampling frame (non-coverage) or to individual non-responses in theoretical 'ranked set sampling' framework. 続きを読む

 
ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/861744903>
library:oclcnum"861744903"
library:placeOfPublication
owl:sameAs<info:oclcnum/861744903>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2013"
schema:description"The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1784230739>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Handling missing data in ranked set sampling"@en
schema:url
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=647456>
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.