skip to content
Harmonic analysis method for nonlinear evolution equations, I Preview this item
ClosePreview this item
Checking...

Harmonic analysis method for nonlinear evolution equations, I

Author: Baoxiang Wang; Zhaohui Huo; Zihua Guo; Chengchun Hao
Publisher: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Baoxiang Wang; Zhaohui Huo; Zihua Guo; Chengchun Hao
ISBN: 9814360740 9789814360746 1283433990 9781283433990
OCLC Number: 773799256
Description: 1 online resource (xiv, 283 pages) : illustrations
Contents: 1. Fourier multiplier, function space X [superscript]s [subscript]p, q --
2. Navier-Stokes equation --
3. Strichartz estimates for linear dispersive equations --
4. Local and global wellposedness for nonlinear dispersive equations --
5. The low regularity theory for the nonlinear dispersive equations --
6. Frequency-uniform decomposition techniques --
7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations --
8. Boltzmann equation without angular cutoff.
Responsibility: Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo.

Abstract:

A monograph that provides a comprehensive overview on a class of nonlinear dispersive equations, such as nonlinear Schrodinger equation, nonlinear Klein-Gordon equation, KdV equation as well as the  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/773799256> # Harmonic analysis method for nonlinear evolution equations, I
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "773799256" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1028346618#Place/singapore> ; # Singapore
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1028346618#Place/hackensack_nj> ; # Hackensack, NJ
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
    schema:about <http://id.worldcat.org/fast/893474> ; # Differential equations, Nonlinear
    schema:about <http://id.worldcat.org/fast/951490> ; # Harmonic analysis
    schema:about <http://experiment.worldcat.org/entity/work/data/1028346618#Topic/mathematics_infinity> ; # MATHEMATICS--Infinity
    schema:about <http://dewey.info/class/515.2433/e22/> ;
    schema:about <http://id.worldcat.org/fast/1012068> ; # Mathematical analysis
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/wang_baoxiang> ; # Baoxiang Wang
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/hao_chengchun> ; # Chengchun Hao
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/huo_zhaohui> ; # Zhaohui Huo
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/guo_zihua> ; # Zihua Guo
    schema:copyrightYear "2011" ;
    schema:datePublished "2011" ;
    schema:description "1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff."@en ;
    schema:description "This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1028346618> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1028346618#CreativeWork/> ;
    schema:name "Harmonic analysis method for nonlinear evolution equations, I"@en ;
    schema:productID "773799256" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/773799256#PublicationEvent/singapore_hackensack_nj_world_scientific_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1028346618#Agent/world_scientific> ; # World Scientific
    schema:url <http://www.myilibrary.com?id=343399&ref=toc> ;
    schema:url <http://site.ebrary.com/id/10524626> ;
    schema:url <http://www.myilibrary.com?id=343399> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426417> ;
    schema:workExample <http://worldcat.org/isbn/9789814360746> ;
    schema:workExample <http://worldcat.org/isbn/9781283433990> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/773799256> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1028346618#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/guo_zihua> # Zihua Guo
    a schema:Person ;
    schema:familyName "Guo" ;
    schema:givenName "Zihua" ;
    schema:name "Zihua Guo" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/hao_chengchun> # Chengchun Hao
    a schema:Person ;
    schema:familyName "Hao" ;
    schema:givenName "Chengchun" ;
    schema:name "Chengchun Hao" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/huo_zhaohui> # Zhaohui Huo
    a schema:Person ;
    schema:familyName "Huo" ;
    schema:givenName "Zhaohui" ;
    schema:name "Zhaohui Huo" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/wang_baoxiang> # Baoxiang Wang
    a schema:Person ;
    schema:familyName "Wang" ;
    schema:givenName "Baoxiang" ;
    schema:name "Baoxiang Wang" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Place/hackensack_nj> # Hackensack, NJ
    a schema:Place ;
    schema:name "Hackensack, NJ" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Topic/mathematics_infinity> # MATHEMATICS--Infinity
    a schema:Intangible ;
    schema:name "MATHEMATICS--Infinity"@en ;
    .

<http://id.worldcat.org/fast/1012068> # Mathematical analysis
    a schema:Intangible ;
    schema:name "Mathematical analysis"@en ;
    .

<http://id.worldcat.org/fast/893474> # Differential equations, Nonlinear
    a schema:Intangible ;
    schema:name "Differential equations, Nonlinear"@en ;
    .

<http://id.worldcat.org/fast/951490> # Harmonic analysis
    a schema:Intangible ;
    schema:name "Harmonic analysis"@en ;
    .

<http://worldcat.org/entity/work/data/1028346618#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/773799256> ; # Harmonic analysis method for nonlinear evolution equations, I
    .

<http://worldcat.org/isbn/9781283433990>
    a schema:ProductModel ;
    schema:isbn "1283433990" ;
    schema:isbn "9781283433990" ;
    .

<http://worldcat.org/isbn/9789814360746>
    a schema:ProductModel ;
    schema:isbn "9814360740" ;
    schema:isbn "9789814360746" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.