跳到内容
Harmonic analysis method for nonlinear evolution equations, I 预览资料
关闭预览资料
正在查...

Harmonic analysis method for nonlinear evolution equations, I

著者: Baoxiang Wang; Zhaohui Huo; Zihua Guo; Chengchun Hao
出版商: Singapore ; Hackensack, NJ : World Scientific, ©2011.
版本/格式:   电子图书 : 文献 : 英语查看所有的版本和格式
数据库:WorldCat
提要:
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在线查找

与资料的链接

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

类型/形式: Electronic books
附加的形体格式: Print version:
材料类型: 文献, 互联网资源
文件类型: 互联网资源, 计算机文档
所有的著者/提供者: Baoxiang Wang; Zhaohui Huo; Zihua Guo; Chengchun Hao
ISBN: 9814360740 9789814360746 1283433990 9781283433990
OCLC号码: 773799256
描述: 1 online resource (xiv, 283 pages) : illustrations
内容: 1. Fourier multiplier, function space X [superscript]s [subscript]p, q --
2. Navier-Stokes equation --
3. Strichartz estimates for linear dispersive equations --
4. Local and global wellposedness for nonlinear dispersive equations --
5. The low regularity theory for the nonlinear dispersive equations --
6. Frequency-uniform decomposition techniques --
7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations --
8. Boltzmann equation without angular cutoff.
责任: Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo.

摘要:

A monograph that provides a comprehensive overview on a class of nonlinear dispersive equations, such as nonlinear Schrodinger equation, nonlinear Klein-Gordon equation, KdV equation as well as the  再读一些...

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


Primary Entity

<http://www.worldcat.org/oclc/773799256> # Harmonic analysis method for nonlinear evolution equations, I
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
   library:oclcnum "773799256" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1028346618#Place/singapore> ; # Singapore
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1028346618#Place/hackensack_nj> ; # Hackensack, NJ
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
   schema:about <http://id.worldcat.org/fast/893474> ; # Differential equations, Nonlinear
   schema:about <http://id.worldcat.org/fast/951490> ; # Harmonic analysis
   schema:about <http://experiment.worldcat.org/entity/work/data/1028346618#Topic/mathematics_infinity> ; # MATHEMATICS--Infinity
   schema:about <http://dewey.info/class/515.2433/e22/> ;
   schema:about <http://id.worldcat.org/fast/1012068> ; # Mathematical analysis
   schema:bookFormat schema:EBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/wang_baoxiang> ; # Baoxiang Wang
   schema:contributor <http://viaf.org/viaf/1275145857066122920807> ; # Zhaohui Huo
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/hao_chengchun> ; # Chengchun Hao
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1028346618#Person/guo_zihua> ; # Zihua Guo
   schema:copyrightYear "2011" ;
   schema:datePublished "2011" ;
   schema:description "1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff."@en ;
   schema:description "This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1028346618> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isSimilarTo <http://worldcat.org/entity/work/data/1028346618#CreativeWork/> ;
   schema:name "Harmonic analysis method for nonlinear evolution equations, I"@en ;
   schema:productID "773799256" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/773799256#PublicationEvent/singapore_hackensack_nj_world_scientific_2011> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1028346618#Agent/world_scientific> ; # World Scientific
   schema:url <http://www.myilibrary.com?id=343399&ref=toc> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=840682> ;
   schema:url <http://site.ebrary.com/id/10524626> ;
   schema:url <http://www.myilibrary.com?id=343399> ;
   schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=426417> ;
   schema:workExample <http://worldcat.org/isbn/9789814360746> ;
   schema:workExample <http://worldcat.org/isbn/9781283433990> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/773799256> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1028346618#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
   schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/hao_chengchun> # Chengchun Hao
    a schema:Person ;
   schema:familyName "Hao" ;
   schema:givenName "Chengchun" ;
   schema:name "Chengchun Hao" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Person/wang_baoxiang> # Baoxiang Wang
    a schema:Person ;
   schema:familyName "Wang" ;
   schema:givenName "Baoxiang" ;
   schema:name "Baoxiang Wang" ;
    .

<http://experiment.worldcat.org/entity/work/data/1028346618#Topic/mathematics_infinity> # MATHEMATICS--Infinity
    a schema:Intangible ;
   schema:name "MATHEMATICS--Infinity"@en ;
    .

<http://id.worldcat.org/fast/1012068> # Mathematical analysis
    a schema:Intangible ;
   schema:name "Mathematical analysis"@en ;
    .

<http://id.worldcat.org/fast/893474> # Differential equations, Nonlinear
    a schema:Intangible ;
   schema:name "Differential equations, Nonlinear"@en ;
    .

<http://id.worldcat.org/fast/951490> # Harmonic analysis
    a schema:Intangible ;
   schema:name "Harmonic analysis"@en ;
    .

<http://viaf.org/viaf/1275145857066122920807> # Zhaohui Huo
    a schema:Person ;
   schema:familyName "Huo" ;
   schema:givenName "Zhaohui" ;
   schema:name "Zhaohui Huo" ;
    .

<http://worldcat.org/entity/work/data/1028346618#CreativeWork/>
    a schema:CreativeWork ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/773799256> ; # Harmonic analysis method for nonlinear evolution equations, I
    .

<http://worldcat.org/isbn/9781283433990>
    a schema:ProductModel ;
   schema:isbn "1283433990" ;
   schema:isbn "9781283433990" ;
    .

<http://worldcat.org/isbn/9789814360746>
    a schema:ProductModel ;
   schema:isbn "9814360740" ;
   schema:isbn "9789814360746" ;
    .


Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.