## Find a copy online

### Links to this item

ebooks.worldscinet.com Accès réservé UdeM ; accès illimité

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Material Type: | Document, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Baoxiang Wang; et al |

ISBN: | 9789814360746 9814360740 |

OCLC Number: | 869597259 |

Notes: | Versement en lot. |

Description: | 1 online resource (1 texte électronique) fichier(s) PDF. |

Contents: | 1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities -- 2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS -- 3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints -- 4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations -- 6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS -- 8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case. |

Other Titles: | Harmonic analysis method for nonlinear evolution equations, one |

Responsibility: | Baoxiang Wang ... [et al.]. |

### Abstract:

This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.

## Reviews

*User-contributed reviews*

Add a review and share your thoughts with other readers.
Be the first.

Add a review and share your thoughts with other readers.
Be the first.

## Tags

Add tags for "Harmonic analysis method for nonlinear evolution equations, I".
Be the first.