skip to content
Harmonic analysis method for nonlinear evolution equations, I Preview this item
ClosePreview this item
Checking...

Harmonic analysis method for nonlinear evolution equations, I

Author: Baoxiang Wang; et al
Publisher: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2011.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Baoxiang Wang; et al
ISBN: 9789814360746 9814360740
OCLC Number: 869597259
Notes: Versement en lot.
Description: 1 online resource (1 texte électronique) fichier(s) PDF.
Contents: 1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities --
2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS --
3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints --
4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations --
6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations --
7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS --
8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case.
Other Titles: Harmonic analysis method for nonlinear evolution equations, one
Responsibility: Baoxiang Wang ... [et al.].

Abstract:

This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/869597259>
library:oclcnum"869597259"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/869597259>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2011"
schema:datePublished"2011"
schema:description"1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities -- 2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS -- 3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints -- 4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations -- 6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS -- 8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case."
schema:description"This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrodinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1028346618>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Harmonic analysis method for nonlinear evolution equations, I"
schema:name"Harmonic analysis method for nonlinear evolution equations, one"
schema:publisher
schema:url<http://ebooks.worldscinet.com/ISBN/9789814360746/9789814360746.html>
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.