aller au contenu
How round is your circle? : where engineering and mathematics meet Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

How round is your circle? : where engineering and mathematics meet

Auteur : John Bryant; C J Sangwin
Éditeur : Princeton : Princeton University Press, ©2008.
Édition/format :   Livre : AnglaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
Évaluation :

moyenne basée sur 1 évaluation(s) 1 avec une critique

Sujets
Plus comme ceci

 

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Type d’ouvrage : Ressource Internet
Format : Livre, Ressource Internet
Tous les auteurs / collaborateurs : John Bryant; C J Sangwin
ISBN : 9780691131184 069113118X 9780691149929 0691149925
Numéro OCLC : 163625336
Description : xix, 306 p., [16] p. of plates : ill. (some col.) ; 25 cm.
Contenu : Preface --
Acknowledgements --
ch. 1. Hard lines --
1.1. Cutting lines --
1.2. The Pythagorean theorem --
1.3. Broad lines --
1.4. Cutting lines --
1.5. Trial by trials --
ch. 2. How to draw a straight line --
2.1. Approximate-straight-line linkages --
2.2. Exact-straight-line linkages --
2.3. Hart's exact-straight-line mechanism --
2.4. Guide linkages --
2.5. Other ways to draw a straight line --
ch. 3. Four-bar variations --
3.1. Making linkages --
3.2. The pantograph --
3.3. The crossed parallelogram --
3.4. Four-bar linkages --
3.5. The triple generation theorem --
3.6. How to draw a big circle --
3.7. Chebyshev's paradoxical mechanism --
ch. 4. Building the world's first ruler --
4.1. Standards of length --
4.2. Dividing the unit by geometry --
4.3. Building the world's first ruler --
4.4. Ruler markings --
4.5. Reading scales accurately --
4.6. Similar triangles and the sector --
ch. 5. Dividing the circle --
5.1. Units of angular measurement --
5.2. Constructing base angles via polygons --
5.3. Constructing a regular pentagon --
5.4. Building the world's first protractor --
5.5. Approximately trisecting an angle --
5.6. Trisecting an angle by other means --
5.7. Trisection of an arbitrary angle --
5.8. Origami. ch. 6. Falling apart --
6.1. Adding up sequences of integers --
6.2. Duijvestijn's dissection --
6.3. Packing --
6.4. Plane dissections --
6.5. Ripping paper --
6.6. A homely dissection --
6.7. Something more solid --
ch. 7. Follow my leader --
ch. 8. In pursuit of coat-hangers --
8.1. What is area? --
8.2. Practical measurement of areas --
8.3. Areas swept out by a line --
8.4. The linear planimeter --
8.5. The polar planimeter of Amsler --
8.6. The hatchet planimeter of Prytz --
8.7. The return of the bent coat-hanger --
8.8. Other mathematical integrators --
ch. 9. All approximations are rational --
9.1. Laying pipes under a tiled floor --
9.2. Cogs and millwrights --
9.3. Cutting a metric screw --
9.4. The binary calendar --
9.5. The harmonograph--
9.6. A little nonsense! --
ch. 10. How round is your circle? --
10.1. Families of shapes of constant width --
10.2. Other shapes of constant width --
10.3. Three-dimensional shapes of constant width --
10.4. Applications --
10.5. Making shapes of constant width --
10.6. Roundness --
10.7. The British Standard Summit Tests of BS3730 --
10.8. Three-point tests --
10.9. Shapes via an envelope of lines --
10.10. Rotors of triangles with rational angles --
10.11. Examples of rotors of triangles --
10.12. Modern and accurate roundness methods. ch. 11. Plenty of slide rule --
11.1. The logarithmic slide rule --
11.2. The invention of slide rules --
11.3. Other calculations and scales --
11.4. Circular and cylindrical slide rules --
11.5. Slide rules for special purposes --
11.6. The magnameta oil tonnage calculator --
11.7. Non-logarithmic slide rules --
11.8. Nomograms --
11.9. Oughtred and Delamian's views on education --
ch. 12. All a matter of balance --
12.1. Stacking up --
12.2. The divergence of the harmonic series --
12.3. Building the stack of dominos --
12.4. The leaning pencil and reaching the stars --
12.5. Spiralling out of control --
12.6. Escaping from danger --
12.7. Leaning both ways! --
12.8. Self-righting stacks --
12.9. Two-tip polyhedra --
12.10. Uni-stable polyhedra --
ch. 13. Finding some equilibrium --
13.1. Rolling uphill --
13.2. Perpendicular rolling discs --
13.3. Ellipses --
13.4. Slotted ellipses --
13.5. The super-egg --
Epilogue --
References --
Index.
Responsabilité : John Bryant and Chris Sangwin.
Plus d’informations :

Résumé :

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the  Lire la suite...

Critiques

Critiques éditoriales

Synopsis de l’éditeur

There are many books that include ideas or instructions for making mathematical models. What is special about this one is the emphasis on the relation of model- or tool-building with the physical Lire la suite...

 
Critiques d’utilisateurs

Critiques des utilisateurs de WorldCat (1)

Review from American Scientist

de deblenares (Utilisateur de WorldCat. Publication 2008-10-15) Bon Permalien
<h2 class="staticTitle">Book Review: How Round Is Your Circle?</h2>

October 15, 2008

excerpt of review:

"The great power of computers to model various aspects of geometry and mechanics has made it possible to visualize things quickly and in useful and innovative...
Lire la suite...  Lire la suite...

  • 1 sur 1 personnes ont trouvé cette critique utile. Et vous? 
  •   
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Tous les tags des utilisateurs (1)

Voir les tags les plus utilisés sous forme de : liste de tags | nuage de tags

  • math  (de 1 personne)

Ouvrages semblables

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/163625336>
library:oclcnum"163625336"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/163625336>
rdf:typeschema:Book
rdfs:seeAlso
schema:about
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Modèles géométriques."
schema:about
rdf:typeschema:Intangible
schema:name"inženirska matematika--geometrija--populariziranje znanosti."
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"Géométrie algébrique."
schema:about
schema:about
schema:about
schema:about
schema:about
schema:author
schema:contributor
schema:copyrightYear"2008"
schema:datePublished"2008"
schema:description"'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium."
schema:exampleOfWork<http://worldcat.org/entity/work/id/891461276>
schema:inLanguage"en"
schema:name"How round is your circle? : where engineering and mathematics meet"
schema:numberOfPages"306"
schema:publisher
rdf:typeschema:Organization
schema:name"Princeton University Press"
schema:workExample
schema:workExample
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA777317>

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.