コンテンツへ移動
How round is your circle? : where engineering and mathematics meet 資料のプレビュー
閉じる資料のプレビュー
確認中…

How round is your circle? : where engineering and mathematics meet

著者: John Bryant; C J Sangwin
出版: Princeton : Princeton University Press, ©2008.
エディション/フォーマット:   書籍 : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
評価:

評価数: 1 件 1 件のレビュー

件名:
関連情報:

 

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: インターネット資料
ドキュメントの種類: 図書, インターネットリソース
すべての著者/寄与者: John Bryant; C J Sangwin
ISBN: 9780691131184 069113118X 9780691149929 0691149925
OCLC No.: 163625336
物理形態: xix, 306 p., [16] p. of plates : ill. (some col.) ; 25 cm.
コンテンツ: Preface --
Acknowledgements --
ch. 1. Hard lines --
1.1. Cutting lines --
1.2. The Pythagorean theorem --
1.3. Broad lines --
1.4. Cutting lines --
1.5. Trial by trials --
ch. 2. How to draw a straight line --
2.1. Approximate-straight-line linkages --
2.2. Exact-straight-line linkages --
2.3. Hart's exact-straight-line mechanism --
2.4. Guide linkages --
2.5. Other ways to draw a straight line --
ch. 3. Four-bar variations --
3.1. Making linkages --
3.2. The pantograph --
3.3. The crossed parallelogram --
3.4. Four-bar linkages --
3.5. The triple generation theorem --
3.6. How to draw a big circle --
3.7. Chebyshev's paradoxical mechanism --
ch. 4. Building the world's first ruler --
4.1. Standards of length --
4.2. Dividing the unit by geometry --
4.3. Building the world's first ruler --
4.4. Ruler markings --
4.5. Reading scales accurately --
4.6. Similar triangles and the sector --
ch. 5. Dividing the circle --
5.1. Units of angular measurement --
5.2. Constructing base angles via polygons --
5.3. Constructing a regular pentagon --
5.4. Building the world's first protractor --
5.5. Approximately trisecting an angle --
5.6. Trisecting an angle by other means --
5.7. Trisection of an arbitrary angle --
5.8. Origami. ch. 6. Falling apart --
6.1. Adding up sequences of integers --
6.2. Duijvestijn's dissection --
6.3. Packing --
6.4. Plane dissections --
6.5. Ripping paper --
6.6. A homely dissection --
6.7. Something more solid --
ch. 7. Follow my leader --
ch. 8. In pursuit of coat-hangers --
8.1. What is area? --
8.2. Practical measurement of areas --
8.3. Areas swept out by a line --
8.4. The linear planimeter --
8.5. The polar planimeter of Amsler --
8.6. The hatchet planimeter of Prytz --
8.7. The return of the bent coat-hanger --
8.8. Other mathematical integrators --
ch. 9. All approximations are rational --
9.1. Laying pipes under a tiled floor --
9.2. Cogs and millwrights --
9.3. Cutting a metric screw --
9.4. The binary calendar --
9.5. The harmonograph--
9.6. A little nonsense! --
ch. 10. How round is your circle? --
10.1. Families of shapes of constant width --
10.2. Other shapes of constant width --
10.3. Three-dimensional shapes of constant width --
10.4. Applications --
10.5. Making shapes of constant width --
10.6. Roundness --
10.7. The British Standard Summit Tests of BS3730 --
10.8. Three-point tests --
10.9. Shapes via an envelope of lines --
10.10. Rotors of triangles with rational angles --
10.11. Examples of rotors of triangles --
10.12. Modern and accurate roundness methods. ch. 11. Plenty of slide rule --
11.1. The logarithmic slide rule --
11.2. The invention of slide rules --
11.3. Other calculations and scales --
11.4. Circular and cylindrical slide rules --
11.5. Slide rules for special purposes --
11.6. The magnameta oil tonnage calculator --
11.7. Non-logarithmic slide rules --
11.8. Nomograms --
11.9. Oughtred and Delamian's views on education --
ch. 12. All a matter of balance --
12.1. Stacking up --
12.2. The divergence of the harmonic series --
12.3. Building the stack of dominos --
12.4. The leaning pencil and reaching the stars --
12.5. Spiralling out of control --
12.6. Escaping from danger --
12.7. Leaning both ways! --
12.8. Self-righting stacks --
12.9. Two-tip polyhedra --
12.10. Uni-stable polyhedra --
ch. 13. Finding some equilibrium --
13.1. Rolling uphill --
13.2. Perpendicular rolling discs --
13.3. Ellipses --
13.4. Slotted ellipses --
13.5. The super-egg --
Epilogue --
References --
Index.
責任者: John Bryant and Chris Sangwin.
その他の情報:

概要:

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the  続きを読む

レビュー

編集者のレビュー

出版社によるあらすじ

There are many books that include ideas or instructions for making mathematical models. What is special about this one is the emphasis on the relation of model- or tool-building with the physical 続きを読む

 
ユーザーレビュー

WorldCatユーザーのレビュー (1)

Review from American Scientist

by deblenares (投稿: 2008-10-15) 良い パーマリンク
<h2 class="staticTitle">Book Review: How Round Is Your Circle?</h2>

October 15, 2008

excerpt of review:

"The great power of computers to model various aspects of geometry and mechanics has made it possible to visualize things quickly and in useful and innovative...
続きを読む  続きを読む

  • 1 of 1 人が、このレビューが参考になったと言っています。あなたはいかがですか? 
  •   
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

すべてのユーザーのタグ (1)

人気のタグを表示: タグリスト | タグクラウド

  • math  (by 1 ユーザー)
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/163625336>
library:oclcnum"163625336"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/163625336>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/910601>
rdf:typeschema:Intangible
schema:name"Engineering mathematics"@en
schema:name"Engineering mathematics."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2008"
schema:creator
schema:datePublished"2008"
schema:description"'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/891461276>
schema:inLanguage"en"
schema:name"How round is your circle? : where engineering and mathematics meet"@en
schema:numberOfPages"306"
schema:publisher
schema:url
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA777317>

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.