doorgaan naar inhoud
How round is your circle? : where engineering and mathematics meet Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

How round is your circle? : where engineering and mathematics meet

Auteur: John Bryant; C J Sangwin
Uitgever: Princeton : Princeton University Press, ©2008.
Editie/Formaat:   Boek : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
Beoordeling:

gebaseerd op 1 waardering(en) 1 met een beoordeling

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Internetbron
Soort document: Boek, Internetbron
Alle auteurs / medewerkers: John Bryant; C J Sangwin
ISBN: 9780691131184 069113118X 9780691149929 0691149925
OCLC-nummer: 163625336
Beschrijving: xix, 306 p., [16] p. of plates : ill. (some col.) ; 25 cm.
Inhoud: Preface --
Acknowledgements --
ch. 1. Hard lines --
1.1. Cutting lines --
1.2. The Pythagorean theorem --
1.3. Broad lines --
1.4. Cutting lines --
1.5. Trial by trials --
ch. 2. How to draw a straight line --
2.1. Approximate-straight-line linkages --
2.2. Exact-straight-line linkages --
2.3. Hart's exact-straight-line mechanism --
2.4. Guide linkages --
2.5. Other ways to draw a straight line --
ch. 3. Four-bar variations --
3.1. Making linkages --
3.2. The pantograph --
3.3. The crossed parallelogram --
3.4. Four-bar linkages --
3.5. The triple generation theorem --
3.6. How to draw a big circle --
3.7. Chebyshev's paradoxical mechanism --
ch. 4. Building the world's first ruler --
4.1. Standards of length --
4.2. Dividing the unit by geometry --
4.3. Building the world's first ruler --
4.4. Ruler markings --
4.5. Reading scales accurately --
4.6. Similar triangles and the sector --
ch. 5. Dividing the circle --
5.1. Units of angular measurement --
5.2. Constructing base angles via polygons --
5.3. Constructing a regular pentagon --
5.4. Building the world's first protractor --
5.5. Approximately trisecting an angle --
5.6. Trisecting an angle by other means --
5.7. Trisection of an arbitrary angle --
5.8. Origami. ch. 6. Falling apart --
6.1. Adding up sequences of integers --
6.2. Duijvestijn's dissection --
6.3. Packing --
6.4. Plane dissections --
6.5. Ripping paper --
6.6. A homely dissection --
6.7. Something more solid --
ch. 7. Follow my leader --
ch. 8. In pursuit of coat-hangers --
8.1. What is area? --
8.2. Practical measurement of areas --
8.3. Areas swept out by a line --
8.4. The linear planimeter --
8.5. The polar planimeter of Amsler --
8.6. The hatchet planimeter of Prytz --
8.7. The return of the bent coat-hanger --
8.8. Other mathematical integrators --
ch. 9. All approximations are rational --
9.1. Laying pipes under a tiled floor --
9.2. Cogs and millwrights --
9.3. Cutting a metric screw --
9.4. The binary calendar --
9.5. The harmonograph--
9.6. A little nonsense! --
ch. 10. How round is your circle? --
10.1. Families of shapes of constant width --
10.2. Other shapes of constant width --
10.3. Three-dimensional shapes of constant width --
10.4. Applications --
10.5. Making shapes of constant width --
10.6. Roundness --
10.7. The British Standard Summit Tests of BS3730 --
10.8. Three-point tests --
10.9. Shapes via an envelope of lines --
10.10. Rotors of triangles with rational angles --
10.11. Examples of rotors of triangles --
10.12. Modern and accurate roundness methods. ch. 11. Plenty of slide rule --
11.1. The logarithmic slide rule --
11.2. The invention of slide rules --
11.3. Other calculations and scales --
11.4. Circular and cylindrical slide rules --
11.5. Slide rules for special purposes --
11.6. The magnameta oil tonnage calculator --
11.7. Non-logarithmic slide rules --
11.8. Nomograms --
11.9. Oughtred and Delamian's views on education --
ch. 12. All a matter of balance --
12.1. Stacking up --
12.2. The divergence of the harmonic series --
12.3. Building the stack of dominos --
12.4. The leaning pencil and reaching the stars --
12.5. Spiralling out of control --
12.6. Escaping from danger --
12.7. Leaning both ways! --
12.8. Self-righting stacks --
12.9. Two-tip polyhedra --
12.10. Uni-stable polyhedra --
ch. 13. Finding some equilibrium --
13.1. Rolling uphill --
13.2. Perpendicular rolling discs --
13.3. Ellipses --
13.4. Slotted ellipses --
13.5. The super-egg --
Epilogue --
References --
Index.
Verantwoordelijkheid: John Bryant and Chris Sangwin.
Meer informatie:

Fragment:

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

There are many books that include ideas or instructions for making mathematical models. What is special about this one is the emphasis on the relation of model- or tool-building with the physical Meer lezen...

 
Beoordelingen door gebruikers

Beoordelingen van WorldCat-gebruikers (1)

Review from American Scientist

door deblenares (Gepubliceerd door gebruiker WorldCat 2008-10-15) Goed Permalink
<h2 class="staticTitle">Book Review: How Round Is Your Circle?</h2>

October 15, 2008

excerpt of review:

"The great power of computers to model various aspects of geometry and mechanics has made it possible to visualize things quickly and in useful and innovative...
Meer lezen...  Meer lezen...

  • 1 van 1 mensen vonden deze beoordeling nuttig. Had u er iets aan? 
  •   
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

Alle gebruiker-tags (1)

De meest populaire tags bekijken als: Tag-list | Tag-wolk

  • math  (door 1 persoon)
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/163625336>
library:oclcnum"163625336"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/163625336>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/910601>
rdf:typeschema:Intangible
schema:name"Engineering mathematics"@en
schema:name"Engineering mathematics."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2008"
schema:creator
schema:datePublished"2008"
schema:description"'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/891461276>
schema:inLanguage"en"
schema:name"How round is your circle? : where engineering and mathematics meet"@en
schema:numberOfPages"306"
schema:publisher
schema:url
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA777317>

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.