pular para conteúdo
How round is your circle? : where engineering and mathematics meet Ver prévia deste item
FecharVer prévia deste item
Checando...

How round is your circle? : where engineering and mathematics meet

Autor: John Bryant; C J Sangwin
Editora: Princeton : Princeton University Press, ©2008.
Edição/Formato   Livro : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
Classificação:

baseado em 1 classificação(ões) 1 com uma crítica

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Recurso Internet
Tipo de Documento: Livro, Recurso Internet
Todos os Autores / Contribuintes: John Bryant; C J Sangwin
ISBN: 9780691131184 069113118X 9780691149929 0691149925
Número OCLC: 163625336
Descrição: xix, 306 p., [16] p. of plates : ill. (some col.) ; 25 cm.
Conteúdos: Preface --
Acknowledgements --
ch. 1. Hard lines --
1.1. Cutting lines --
1.2. The Pythagorean theorem --
1.3. Broad lines --
1.4. Cutting lines --
1.5. Trial by trials --
ch. 2. How to draw a straight line --
2.1. Approximate-straight-line linkages --
2.2. Exact-straight-line linkages --
2.3. Hart's exact-straight-line mechanism --
2.4. Guide linkages --
2.5. Other ways to draw a straight line --
ch. 3. Four-bar variations --
3.1. Making linkages --
3.2. The pantograph --
3.3. The crossed parallelogram --
3.4. Four-bar linkages --
3.5. The triple generation theorem --
3.6. How to draw a big circle --
3.7. Chebyshev's paradoxical mechanism --
ch. 4. Building the world's first ruler --
4.1. Standards of length --
4.2. Dividing the unit by geometry --
4.3. Building the world's first ruler --
4.4. Ruler markings --
4.5. Reading scales accurately --
4.6. Similar triangles and the sector --
ch. 5. Dividing the circle --
5.1. Units of angular measurement --
5.2. Constructing base angles via polygons --
5.3. Constructing a regular pentagon --
5.4. Building the world's first protractor --
5.5. Approximately trisecting an angle --
5.6. Trisecting an angle by other means --
5.7. Trisection of an arbitrary angle --
5.8. Origami. ch. 6. Falling apart --
6.1. Adding up sequences of integers --
6.2. Duijvestijn's dissection --
6.3. Packing --
6.4. Plane dissections --
6.5. Ripping paper --
6.6. A homely dissection --
6.7. Something more solid --
ch. 7. Follow my leader --
ch. 8. In pursuit of coat-hangers --
8.1. What is area? --
8.2. Practical measurement of areas --
8.3. Areas swept out by a line --
8.4. The linear planimeter --
8.5. The polar planimeter of Amsler --
8.6. The hatchet planimeter of Prytz --
8.7. The return of the bent coat-hanger --
8.8. Other mathematical integrators --
ch. 9. All approximations are rational --
9.1. Laying pipes under a tiled floor --
9.2. Cogs and millwrights --
9.3. Cutting a metric screw --
9.4. The binary calendar --
9.5. The harmonograph--
9.6. A little nonsense! --
ch. 10. How round is your circle? --
10.1. Families of shapes of constant width --
10.2. Other shapes of constant width --
10.3. Three-dimensional shapes of constant width --
10.4. Applications --
10.5. Making shapes of constant width --
10.6. Roundness --
10.7. The British Standard Summit Tests of BS3730 --
10.8. Three-point tests --
10.9. Shapes via an envelope of lines --
10.10. Rotors of triangles with rational angles --
10.11. Examples of rotors of triangles --
10.12. Modern and accurate roundness methods. ch. 11. Plenty of slide rule --
11.1. The logarithmic slide rule --
11.2. The invention of slide rules --
11.3. Other calculations and scales --
11.4. Circular and cylindrical slide rules --
11.5. Slide rules for special purposes --
11.6. The magnameta oil tonnage calculator --
11.7. Non-logarithmic slide rules --
11.8. Nomograms --
11.9. Oughtred and Delamian's views on education --
ch. 12. All a matter of balance --
12.1. Stacking up --
12.2. The divergence of the harmonic series --
12.3. Building the stack of dominos --
12.4. The leaning pencil and reaching the stars --
12.5. Spiralling out of control --
12.6. Escaping from danger --
12.7. Leaning both ways! --
12.8. Self-righting stacks --
12.9. Two-tip polyhedra --
12.10. Uni-stable polyhedra --
ch. 13. Finding some equilibrium --
13.1. Rolling uphill --
13.2. Perpendicular rolling discs --
13.3. Ellipses --
13.4. Slotted ellipses --
13.5. The super-egg --
Epilogue --
References --
Index.
Responsabilidade: John Bryant and Chris Sangwin.
Mais informações:

Resumo:

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the  Ler mais...

Críticas

Críticas editoriais

Nielsen BookData

There are many books that include ideas or instructions for making mathematical models. What is special about this one is the emphasis on the relation of model- or tool-building with the physical Ler mais...

 
Críticas contribuídas por usuários

Críticas de Usuários WorldCat (1)

Review from American Scientist

por deblenares (Usuário WorldCat publicado 2008-10-15) Bom Permalink
<h2 class="staticTitle">Book Review: How Round Is Your Circle?</h2>

October 15, 2008

excerpt of review:

"The great power of computers to model various aspects of geometry and mechanics has made it possible to visualize things quickly and in useful and innovative...
Ler mais...  Ler mais...

  • 1 de 1 as pessoas acharam que esta crítica ajuda. Ela ajudou você? 
  •   
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Etiquetas de todos os usuários (1)

Ver as etiquetas mais populares como: lista de etiquetas | nuvem de etiquetas

  • math  (por 1 pessoa)
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/163625336>
library:oclcnum"163625336"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2008"
schema:creator
schema:datePublished"2008"
schema:description"'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/891461276>
schema:inLanguage"en"
schema:name"How round is your circle? : where engineering and mathematics meet"@en
schema:numberOfPages"306"
schema:publication
schema:publisher
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA777317>
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.