跳到内容
How round is your circle? : where engineering and mathematics meet 预览资料
关闭预览资料
正在查...

How round is your circle? : where engineering and mathematics meet

著者: John Bryant; C J Sangwin
出版商: Princeton : Princeton University Press, ©2008.
版本/格式:   图书 : 英语查看所有的版本和格式
数据库:WorldCat
提要:
'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
评估:

根据 1 评估等级 1 附有评论

主题
更多类似这样的

 

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

材料类型: 互联网资源
文件类型: 书, 互联网资源
所有的著者/提供者: John Bryant; C J Sangwin
ISBN: 9780691131184 069113118X 9780691149929 0691149925
OCLC号码: 163625336
描述: xix, 306 p., [16] p. of plates : ill. (some col.) ; 25 cm.
内容: Preface --
Acknowledgements --
ch. 1. Hard lines --
1.1. Cutting lines --
1.2. The Pythagorean theorem --
1.3. Broad lines --
1.4. Cutting lines --
1.5. Trial by trials --
ch. 2. How to draw a straight line --
2.1. Approximate-straight-line linkages --
2.2. Exact-straight-line linkages --
2.3. Hart's exact-straight-line mechanism --
2.4. Guide linkages --
2.5. Other ways to draw a straight line --
ch. 3. Four-bar variations --
3.1. Making linkages --
3.2. The pantograph --
3.3. The crossed parallelogram --
3.4. Four-bar linkages --
3.5. The triple generation theorem --
3.6. How to draw a big circle --
3.7. Chebyshev's paradoxical mechanism --
ch. 4. Building the world's first ruler --
4.1. Standards of length --
4.2. Dividing the unit by geometry --
4.3. Building the world's first ruler --
4.4. Ruler markings --
4.5. Reading scales accurately --
4.6. Similar triangles and the sector --
ch. 5. Dividing the circle --
5.1. Units of angular measurement --
5.2. Constructing base angles via polygons --
5.3. Constructing a regular pentagon --
5.4. Building the world's first protractor --
5.5. Approximately trisecting an angle --
5.6. Trisecting an angle by other means --
5.7. Trisection of an arbitrary angle --
5.8. Origami. ch. 6. Falling apart --
6.1. Adding up sequences of integers --
6.2. Duijvestijn's dissection --
6.3. Packing --
6.4. Plane dissections --
6.5. Ripping paper --
6.6. A homely dissection --
6.7. Something more solid --
ch. 7. Follow my leader --
ch. 8. In pursuit of coat-hangers --
8.1. What is area? --
8.2. Practical measurement of areas --
8.3. Areas swept out by a line --
8.4. The linear planimeter --
8.5. The polar planimeter of Amsler --
8.6. The hatchet planimeter of Prytz --
8.7. The return of the bent coat-hanger --
8.8. Other mathematical integrators --
ch. 9. All approximations are rational --
9.1. Laying pipes under a tiled floor --
9.2. Cogs and millwrights --
9.3. Cutting a metric screw --
9.4. The binary calendar --
9.5. The harmonograph--
9.6. A little nonsense! --
ch. 10. How round is your circle? --
10.1. Families of shapes of constant width --
10.2. Other shapes of constant width --
10.3. Three-dimensional shapes of constant width --
10.4. Applications --
10.5. Making shapes of constant width --
10.6. Roundness --
10.7. The British Standard Summit Tests of BS3730 --
10.8. Three-point tests --
10.9. Shapes via an envelope of lines --
10.10. Rotors of triangles with rational angles --
10.11. Examples of rotors of triangles --
10.12. Modern and accurate roundness methods. ch. 11. Plenty of slide rule --
11.1. The logarithmic slide rule --
11.2. The invention of slide rules --
11.3. Other calculations and scales --
11.4. Circular and cylindrical slide rules --
11.5. Slide rules for special purposes --
11.6. The magnameta oil tonnage calculator --
11.7. Non-logarithmic slide rules --
11.8. Nomograms --
11.9. Oughtred and Delamian's views on education --
ch. 12. All a matter of balance --
12.1. Stacking up --
12.2. The divergence of the harmonic series --
12.3. Building the stack of dominos --
12.4. The leaning pencil and reaching the stars --
12.5. Spiralling out of control --
12.6. Escaping from danger --
12.7. Leaning both ways! --
12.8. Self-righting stacks --
12.9. Two-tip polyhedra --
12.10. Uni-stable polyhedra --
ch. 13. Finding some equilibrium --
13.1. Rolling uphill --
13.2. Perpendicular rolling discs --
13.3. Ellipses --
13.4. Slotted ellipses --
13.5. The super-egg --
Epilogue --
References --
Index.
责任: John Bryant and Chris Sangwin.
更多信息:

摘要:

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the  再读一些...

评论

社评

出版商概要

There are many books that include ideas or instructions for making mathematical models. What is special about this one is the emphasis on the relation of model- or tool-building with the physical 再读一些...

 
用户提供的评论

WorldCat用户评论 (1)

Review from American Scientist

评论者是 deblenares (公布的WorldCat用户 2008-10-15) 好 Permalink
<h2 class="staticTitle">Book Review: How Round Is Your Circle?</h2>

October 15, 2008

excerpt of review:

"The great power of computers to model various aspects of geometry and mechanics has made it possible to visualize things quickly and in useful and innovative...
再读一些...  再读一些...

  • 1 ,最高是 1 有人觉得这个评论很有用。你觉得如何? 
  •   
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

所有的用户标签 (1)

查看最热门的标签,展示的形式是: 标签列表 | 标签云(tag cloud)

  • math  (由 1 个人)
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/163625336>
library:oclcnum"163625336"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/163625336>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/910601>
rdf:typeschema:Intangible
schema:name"Engineering mathematics"@en
schema:name"Engineering mathematics."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"2008"
schema:creator
schema:datePublished"2008"
schema:description"'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/891461276>
schema:inLanguage"en"
schema:name"How round is your circle? : where engineering and mathematics meet"@en
schema:numberOfPages"306"
schema:publisher
schema:url
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA777317>

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.