skip to content
Inequalities in mechanics and physics Preview this item
ClosePreview this item

Inequalities in mechanics and physics

Author: G Duvaut; J -L Lions
Publisher: Berlin ; New York : Springer-Verlag, 1976.
Series: Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 219.
Edition/Format:   Print book : EnglishView all editions and formats

(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Additional Physical Format: Online version:
Duvaut, G.
Inequalities in mechanics and physics.
Berlin ; New York : Springer-Verlag, 1976
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: G Duvaut; J -L Lions
ISBN: 0387073272 9780387073279 3540073272 9783540073277 2040049622 9782040049621
OCLC Number: 1602241
Description: xvi, 397 pages : illustrations ; 25 cm.
Contents: I. Problems of Semi-Permeable Media and of Temperature Control.- 1. Review of Continuum Mechanics.- 1.1. Stress Tensor.- 1.2. Conservation Laws.- 1.3. Strain Tensor.- 1.4. Constituent Laws.- 2. Problems of Semi-Permeable Membranes and of Temperature Control.- 2.1. Formulation of Equations.- 2.1.1. Equations of Thermics.- 2.1.2. Equations of Mechanics of Fluids in Porous Media.- 2.1.3. Equations of Electricity.- 2.2. Semi-Permeable Walls.- 2.2.1. Wall of Negligible Thickness.- 2.2.2. Semi-Permeable Wall of Finite Thickness.- 2.2.3. Semi-Permeable Partition in the Interior of ?.- 2.2.4. Volume Injection Through a Semi-Permeable Wall.- 2.3. Temperature Control.- 2.3.1. Temperature Control Through the Boundary, Regulated by the Temperature at the Boundary.- 2.3.2. Temperature Control Through the Interior, Regulated by the Temperature in the Interior.- 3. Variational Formulation of Problems of Temperature Control and of Semi-Permeable Walls.- 3.1. Notation.- 3.2. Variational Inequalities.- 3.3. Examples. Equivalence with the Problems of Section 2.- 3.3.1. Functions ? of Type 1.- 3.3.2. Functions ? of Type 2.- 3.3.3. Functions ? of Type 3.- 3.4. Some Extensions.- 3.5. Stationary Cases.- 3.5.1. The Function ? Is of Type 1.- 3.5.2. The Function ? Is of Type 2.- 3.5.3. The Function ? Is of Type 3.- 3.5.4. Stationary Case and Problems of the Calculus of Variations.- 4. Some Tools from Functional Analysis.- 4.1. Sobolev Spaces.- 4.2. Applications: The Convex Sets K.- 4.3. Spaces of Vector-Valued Functions.- 5. Solution of the Variational Inequalities of Evolution of Section 3.- 5.1. Definitive Formulation of the Problems.- 5.1.1. Data V, H, V' and a(u, v).- 5.1.2. The Functional ?.- 5.1.3. Formulation of the Problem.- 5.2. Statement of the Principal Results.- 5.3. Verification of the Assumptions.- 5.4. Other Methods of Approximation.- 5.5. Uniqueness Proof in Theorem 5.1 (and 5.2).- 5.6. Proof of Theorems 5.1 and 5.2.- 5.6.1. Solution of (5.14).- 5.6.2. Estimates for uj and u'j.- 5.6.3. Proof of (5.7).- 6. Properties of Positivity and of Comparison of Solutions.- 6.1. Positivity of Solutions.- 6.2. Comparison of Solutions (I).- 6.3. Comparison of Solutions (II).- 7. Stationary Problems.- 7.1. The Strictly Coercive Case.- 7.2. Approximation of the Stationary Condition by the Solution of Problems of Evolution when t ? + ?.- 7.3. The Not Strictly Coercive Case.- 7.3.1. Necessary Conditions for the Existence of Solutions.- 7.3.2. Sufficient Conditions for the Existence of a Solution.- 7.3.3. The Problem of Uniqueness under Assumption (7.48).- 7.3.4. The Limiting Cases in (7.48).- 8. Comments.- II. Problems of Heat Control.- 1. Heat Control.- 1.1. Instantaneous Control.- 1.1.1. Temperature Control at the Boundary.- 1.1.2. Temperature Control in the Interior.- 1.1.3. Properties of the Solutions.- 1.1.4. Other Controls.- 1.2. Delayed Control.- 2. Variational Formulation of Control Problems.- 2.1. Notation.- 2.2. Variational Inequalities.- 2.2.1. Instantaneous Control.- 2.2.2. Delayed Control.- 2.3. Examples.- 2.3.1. The Function ? of Type 1.- 2.3.2. The Function ? of Type 2.- 2.3.3. The Function ? of Type 3.- 2.4. Orientation.- 3. Solution of the Problems of Instantaneous Control.- 3.1. Statement of the Principal Results.- 3.2. Uniqueness Proof for Theorem 3.1 (and 3.2).- 3.3. Proof of Theorems 3.1 and 3.2.- 3.3.1. Solution of the Galerkin Approximation of (3.15).- 3.3.2. Solution of (3.15) and a Priori Estimates for uj.- 3.3.3. Proof of the Statements of the Theorems.- 4. A Property of the Solution of the Problem of Instantaneous Control at a Thin Wall.- 5. Partial Results for Delayed Control.- 5.1. Statement of a Result.- 5.2. Proof of Existence in Theorem 5.1.- 5.3. Proof of Uniqueness in Theorem 5.1.- 6. Comments.- III. Classical Problems and Problems with Friction in Elasticity and Visco-Elasticity.- 1. Introduction.- 2. Classical Linear Elasticity.- 2.1. The Constituent Law.- 2.2. Classical Problems of Linear Elasticity.- 2.2.1. Linearization of the Equation of Conservation of Mass and of the Equations of Motion.- 2.2.2. Boundary Conditions.- 2.2.3. Summary.- 2.3. Variational Formulation of the Problem of Evolution.- 2.3.1. Green's Formula.- 2.3.2. Variational Formulation.- 3. Static Problems.- 3.1. Classical Formulation.- 3.2. Variational Formulation.- 3.3. Korn's Inequality and its Consequences.- 3.4. Results.- 3.4.1. The Case "?U has Positive Measure".- 3.4.2. The Case "?U is Empty".- 3.5. Dual Formulations.- 3.5.1. Statically Admissible Fields and Potential Energy.- 3.5.2. Duality and Lagrange Multipliers.- 4. Dynamic Problems.- 4.1. Statement of the Principal Results.- 4.2. Proof of Theorem 4.1.- 4.3. Other Boundary Conditions.- 4.3.1. Variant I (for Example, a Body on a Rigid Support).- 4.3.2. Variant II (a Body Placed in an Elastic Envelope).- 5. Linear Elasticity with Friction or Unilateral Constraints.- 5.1. First Laws of Friction. Dynamic Case.- 5.1.1. Coulomb's Law.- 5.1.2. Problems under Consideration.- 5.2. Coulomb's Law. Static Case.- 5.2.1. Problems under Consideration.- 5.2.2. Variational Formulation.- 5.2.3. Results. The Case "?U with Positive Measure".- 5.2.4. Results. The Case "?U= O".- 5.3. Dual Variational Formulation.- 5.3.1. Statically Admissible Fields and Potential Energy.- 5.3.2. Duality and Lagrange Multipliers.- 5.4. Other Boundary Conditions and Open Questions.- 5.4.1. Normal Displacement with Friction.- 5.4.2. Signorini's Problem as Limit Case of Problems with Friction.- 5.4.3. Another Condition for Friction with Imposed Normal Displacement.- 5.4.4. Coulomb Friction with Imposed Normal Displacement.- 5.4.5. Signorini's Problem with Friction.- 5.5. The Dynamic Cases.- 5.5.1. Variational Formulation.- 5.5.2. Statement of Results.- 5.5.3. Uniqueness Proof.- 5.5.4. Existence Proof.- 6. Linear Visco-Elasticity. Material with Short Memory.- 6.1. Constituent Law and General Remarks.- 6.2. Dynamic Case. Formulation of the Problem.- 6.3. Existence Theorem and Uniqueness in the Dynamic Case.- 6.4. Quasi-Static Problems. Variational Formulation.- 6.5. Existence and Uniqueness Theorem for the Case when ?U has Measure >0.- 6.6. Discussion of the Case when ?U = O.- 6.7. Justification of the Quasi-Static Case in the Problems without Friction.- 6.7.1. Statement of the Problem.- 6.7.2. The Case "Measure ?U > 0".- 6.7.3. The Case "?U = O".- 6.8. The Case without Viscosity as Limit of the Case with Viscosity.- 6.9. Interpretation of Viscous Problems as Parabolic Systems.- 7. Linear Visco-Elasticity. Material with Long Memory.- 7.1. Constituent Law and General Remarks.- 7.2. Dynamic Problems with Friction.- 7.3. Existence and Uniqueness Theorem in the Dynamic Case.- 7.4. The Quasi-Static Case.- 7.4.1. Necessary Conditions for the Initial Data.- 7.4.2. Discussion of the Case "Measure ?U >0".- 7.4.3. Discussion of the Case " ?U = O".- 7.5. Use of the Laplace Transformation in the Cases without Friction.- 7.6. Elastic Case as Limit of the Case with Memory.- 8. Comments.- IV. Unilateral Phenomena in the Theory of Flat Plates.- 1. Introduction.- 2. General Theory of Plates.- 2.1. Definitions and Notation.- 2.2. Analysis of Forces.- 2.3. Linearized Theory.- 2.3.1. Hypotheses.- 2.3.2. Formulation of Equations. First Method.- 2.3.3. Formulation of Equations. Second Method (due to Landau and Lifshitz).- 2.3.4. Summary.- 3. Problems to be Considered.- 3.1. Classical Problems.- 3.2. Unilateral Problems.- 4. Stationary Unilateral Problems.- 4.1. Notation.- 4.2. Problems (Stationary).- 4.3. Solution of Problem 4.1. Necessary Conditions for the Existence of a Solution.- 4.4. Solution of Problem 4.1. Sufficient Conditions.- 4.5. The Question of Uniqueness in Problems 4.1 and 4.3.- 4.6. Solution of Problem 4.1a.- 4.7. Solution of Problem 4.2.- 5. Unilateral Problems of Evolution.- 5.1. Formulation of the Problems.- 5.2. Solution of Unilateral Problems of Evolution.- 6. Comments.- V. Introduction to Plasticity.- 1. Introduction.- 2. The Elastic Perfectly Plastic Case (Prandtl-Reuss Law) and the Elasto-Visco-Plastic Case.- 2.1. Constituent Law of Prandtl-Reuss.- 2.1.1. Preliminary Observation.- 2.1.2. Generalization.- 2.2. Elasto-Visco-Plastic Constituent Law.- 2.3. Problems to be Discussed.- 3. Discussion of Elasto-Visco-Plastic, Dynamic and Quasi-Static Problems.- 3.1. Variational Formulation of the Problems.- 3.2. Statement of Results.- 3.3. Uniqueness Proof in the Theorems.- 3.4. Existence Proof in the Dynamic Case.- 3.5. Existence Proof in the Quasi-Static Case.- 4. Discussion of Elastic Perfectly Plastic Problems.- 4.1. Statement of the Problems.- 4.2. Formulation of the Results.- 4.3. Proof of the Uniqueness Results.- 4.4. Proof of Theorems 4.1 and 4.2.- 4.5. Proof of Theorems 4.3 and 4.4.- 5. Discussion of Rigid-Visco-Plastic and Rigid Perfectly Plastic Problems.- 5.1. Rigid-Visco-Plastic Problems.- 5.2. Rigid Perfectly Plastic Problems.- 6. Hencky's Law. The Problem of Elasto-Plastic Torsion.- 6.1. Constituent Law.- 6.2. Problems to be Considered.- 6.3. Variational Formulation for the Stresses.- 6.4. Determination of the Field of Displacements.- 6.5. Isotropic Material with the Von Mises Condition.- 6.6. Torsion of a Cylindrical Tree (Fig. 19).- 7. Locking Material.- 7.1. Constituent Law.- 7.2. Problem to be Considered.- 7.3. Double Variational Formulation of the Problem.- 7.4. Existence and Uniqueness of a Displacement Field Solution.- 7.5. The Associated Field of Stresses.- 8. Comments.- VI. Rigid Visco-Plastic Bingham Fluid.- 1. Introduction and Problems to be Considered.- 1.1. Constituent Law of a Rigid Visco-Plastic, Incompressible Fluid.- 1.2. The Dissipation Function.- 1.3. Problems to be Considered and Recapitulation of the Equations.- 2. Flow in the Interior of a Reservoir. Formulation in the Form of a Variational Inequality.- 2.1. Preliminary Notation.- 2.2. Variational Inequality.- 3. Solution of the Variational Inequality, Characteristic for the Flow of a Bingham Fluid in the Interior of a Reservoir.- 3.1. Tools from Functional Analysis.- 3.2. Functional Formulation of the Variational Inequalities.- 3.3. Proof of Theorem 3.2.- 3.4. Proof of Theorem 3.1.- 3.4.1. Existence Proof.- 3.4.2. Uniqueness Proof.- 4. A Regularity Theorem in Two Dimensions.- 5. Newtonian Fluids as Limits of Bingham Fluids.- 5.1. Statement of the Result.- 5.2. Proof of Theorem 5.1.- 6. Stationary Problems.- 6.1. Statement of the Results.- 6.2. Proof.- 7. Exterior Problem.- 7.1. Formulation of the Problem as a Variational Inequality.- 7.2. Results.- 8. Laminar Flow in a Cylindrical Pipe.- 8.1. Recapitulation of the Equations.- 8.2. Variational Formulation.- 8.3. Properties of the Solution.- 9. Interpretation of Inequalities with Multipliers.- 10. Comments.- VII. Maxwell's Equations. Antenna Problems.- 1. Introduction.- 2. The Laws of Electromagnetism.- 2.1. Physical Quantities.- 2.2. Conservation of Electric Charge.- 2.3. Faraday's Law.- 2.4. Recapitulation. Maxwell's Equations.- 2.5. Constituent Laws.- 3. Physical Problems to be Considered.- 3.1. Stable Medium with Supraconductive Boundary.- 3.2. Polarizable Medium with Supraconductive Boundary.- 3.3. Bipolar Antenna.- 3.4. Slotted Antenna. Diffraction of an Electromagnetic Wave by a Supraconductor.- 3.5. Recapitulation. Unified Formulation of the Problems.- 4. Discussion of Stable Media. First Theorem of Existence and Uniqueness.- 4.1. Tools from Functional Analysis for the "Weak" Formulation of the Problem.- 4.2. The Operator A. "Weak" Formulation of the Problem.- 4.3. Existence and Uniqueness of the Weak Solution.- 4.4. Continuous Dependence of the Solution on the Dielectric Constants and on the Magnetic Permeabilities.- 5. Stable Media. Existence of "Strong" Solutions.- 5.1. Strong Solutions in D(A).- 5.2. Solution of the Physical Problem.- 6. Stable Media. Strong Solutions in Sobolev Spaces.- 6.1. Imbedding Theorem.- 6.2. B as Part of a Sobolev Space.- 6.3. D as Part of a Sobolev Space.- 7. Slotted Antennas. Non-Homogeneous Problems.- 7.1. Statement of the Problem (Cf. Sec. 3.4).- 7.2. Statement of the Result.- 7.3. Proof of Theorem 7.1.- 8. Polarizable Media.- 8.1. Existence and Uniqueness Result for a Variational Inequality Associated with the Operators of Maxwell.- 8.2. Interpretation of the Variational Inequality. Solution of the Problems for Polarizable Media.- 8.3. Proof of Theorem 8.1.- 8.3.1. Existence Proof.- 8.3.2. Uniqueness Proof.- 9. Stable Media as Limits of Polarizable Media.- 9.1. Statement of the Result.- 9.2. Proof of Theorem 9.1.- 10. Various Additions.- 11. Comments.- Additional Bibliography and Comments.- 1. Comments.- 2. Bibliography.
Series Title: Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 219.
Other Titles: Inéquations en mécanique et en physique.
Responsibility: G. Duvaut, J.L. Lions ; translated from the French by C.W. John.


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:name"Inéquations en mécanique et en physique."
schema:name"Inequalities in mechanics and physics"@en

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.