skip to content
Information geometry and population genetics : the mathematical structure of the Wright-Fisher model Preview this item
ClosePreview this item
Checking...

Information geometry and population genetics : the mathematical structure of the Wright-Fisher model

Author: Julian Hofrichter; Jürgen Jost; Tat Dat Tran
Publisher: Cham : Springer, 2017.
Series: Springer complexity.; Understanding complex systems.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Hofrichter, Julian.
Information geometry and population genetics.
Cham : Springer, 2017
(OCoLC)965346000
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Julian Hofrichter; Jürgen Jost; Tat Dat Tran
ISBN: 9783319520452 3319520458
OCLC Number: 974463474
Description: 1 online resource.
Contents: 1. Introduction --
2. The Wright?Fisher model --
3. Geometric structures and information geometry --
4. Continuous approximations --
5. Recombination --
6. Moment generating and free energy functionals --
7. Large deviation theory --
8. The forward equation --
9. The backward equation --
10. Applications --
Appendix --
A. Hypergeometric functions and their generalizations --
Bibliography.
Series Title: Springer complexity.; Understanding complex systems.
Responsibility: Julian Hofrichter, Jürgen Jost, Tat Dat Tran.

Abstract:

The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/974463474> # Information geometry and population genetics : the mathematical structure of the Wright-Fisher model
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "974463474" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/3975976086#Place/cham> ; # Cham
    schema:about <http://experiment.worldcat.org/entity/work/data/3975976086#Topic/population_genetics_mathematical_models> ; # Population genetics--Mathematical models
    schema:about <http://dewey.info/class/576.58015118/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/3975976086#Person/jost_jurgen_1956> ; # Jürgen Jost
    schema:contributor <http://experiment.worldcat.org/entity/work/data/3975976086#Person/tran_tat_dat> ; # Tat Dat Tran
    schema:creator <http://experiment.worldcat.org/entity/work/data/3975976086#Person/hofrichter_julian> ; # Julian Hofrichter
    schema:datePublished "2017" ;
    schema:description "The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field."@en ;
    schema:description "1. Introduction -- 2. The Wright?Fisher model -- 3. Geometric structures and information geometry -- 4. Continuous approximations -- 5. Recombination -- 6. Moment generating and free energy functionals -- 7. Large deviation theory -- 8. The forward equation -- 9. The backward equation -- 10. Applications -- Appendix -- A. Hypergeometric functions and their generalizations -- Bibliography."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3975976086> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3975976086#Series/springer_complexity> ; # Springer complexity.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3975976086#Series/understanding_complex_systems> ; # Understanding complex systems.
    schema:isSimilarTo <http://www.worldcat.org/oclc/965346000> ;
    schema:name "Information geometry and population genetics : the mathematical structure of the Wright-Fisher model"@en ;
    schema:productID "974463474" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/974463474#PublicationEvent/cham_springer_2017> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/3975976086#Agent/springer> ; # Springer
    schema:url <https://grinnell.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-52045-2> ;
    schema:url <http://link.springer.com/10.1007/978-3-319-52045-2> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-319-52044-5> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-52045-2> ;
    schema:url <http://uproxy.library.dc-uoit.ca/login?url=http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks3/springer/2017-08-17/5/9783319520452> ;
    schema:url <http://libproxy.uwinnipeg.ca/login?url=http://link.springer.com/10.1007/978-3-319-52045-2> ;
    schema:url <http://sfx.carli.illinois.edu/sfxwhe/sfx_local?genre=book&sid=Voyager:WHE&sfx.ignore_date_threshold=1&svc.fulltext=yes&rft.isbn=978-3-319-52045-2> ;
    schema:url <http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-3-319-52045-2> ;
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/book/10.1007/978-3-319-52045-2> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-52044-5> ;
    schema:workExample <http://worldcat.org/isbn/9783319520452> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-52045-2> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/974463474> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/3975976086#Person/hofrichter_julian> # Julian Hofrichter
    a schema:Person ;
    schema:familyName "Hofrichter" ;
    schema:givenName "Julian" ;
    schema:name "Julian Hofrichter" ;
    .

<http://experiment.worldcat.org/entity/work/data/3975976086#Person/jost_jurgen_1956> # Jürgen Jost
    a schema:Person ;
    schema:birthDate "1956" ;
    schema:familyName "Jost" ;
    schema:givenName "Jürgen" ;
    schema:name "Jürgen Jost" ;
    .

<http://experiment.worldcat.org/entity/work/data/3975976086#Person/tran_tat_dat> # Tat Dat Tran
    a schema:Person ;
    schema:familyName "Tran" ;
    schema:givenName "Tat Dat" ;
    schema:name "Tat Dat Tran" ;
    .

<http://experiment.worldcat.org/entity/work/data/3975976086#Series/springer_complexity> # Springer complexity.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/974463474> ; # Information geometry and population genetics : the mathematical structure of the Wright-Fisher model
    schema:name "Springer complexity." ;
    schema:name "Springer complexity" ;
    .

<http://experiment.worldcat.org/entity/work/data/3975976086#Series/understanding_complex_systems> # Understanding complex systems.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/974463474> ; # Information geometry and population genetics : the mathematical structure of the Wright-Fisher model
    schema:name "Understanding complex systems." ;
    schema:name "Understanding complex systems" ;
    .

<http://experiment.worldcat.org/entity/work/data/3975976086#Topic/population_genetics_mathematical_models> # Population genetics--Mathematical models
    a schema:Intangible ;
    schema:name "Population genetics--Mathematical models"@en ;
    .

<http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-3-319-52045-2>
    rdfs:comment "eBook available for UOIT via SpringerLink. Click link to access" ;
    .

<http://worldcat.org/isbn/9783319520452>
    a schema:ProductModel ;
    schema:isbn "3319520458" ;
    schema:isbn "9783319520452" ;
    .

<http://www.worldcat.org/oclc/965346000>
    a schema:CreativeWork ;
    rdfs:label "Information geometry and population genetics." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/974463474> ; # Information geometry and population genetics : the mathematical structure of the Wright-Fisher model
    .

<http://www.worldcat.org/title/-/oclc/974463474>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/974463474> ; # Information geometry and population genetics : the mathematical structure of the Wright-Fisher model
    schema:dateModified "2018-03-24" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.