skip to content
An information theoretic approach to neural computing Preview this item
ClosePreview this item
Checking...

An information theoretic approach to neural computing

Author: Gustavo Deco; Dragan Obradovic
Publisher: New York ; Berlin [u.a.] : Springer, 1996.
Series: Perspectives in neural computing.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

A detailed formulation of neural networks from the information-theoretic viewpoint. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Gustavo Deco; Dragan Obradovic
ISBN: 0387946667 9780387946665
OCLC Number: 246816567
Description: XIII, 261 S : graph. Darst.
Contents: 1 Introduction.- 2 Preliminaries of Information Theory and Neural Networks.- 2.1 Elements of Information Theory.- 2.1.1 Entropy and Information.- 2.1.2 Joint Entropy and Conditional Entropy.- 2.1.3 Kullback-Leibler Entropy.- 2.1.4 Mutual Information.- 2.1.5 Differential Entropy, Relative Entropy and Mutual Information.- 2.1.6 Chain Rules.- 2.1.7 Fundamental Information Theory Inequalities.- 2.1.8 Coding Theory.- 2.2 Elements of the Theory of Neural Networks.- 2.2.1 Neural Network Modeling.- 2.2.2 Neural Architectures.- 2.2.3 Learning Paradigms.- 2.2.4 Feedforward Networks: Backpropagation.- 2.2.5 Stochastic Recurrent Networks: Boltzmann Machine.- 2.2.6 Unsupervised Competitive Learning.- 2.2.7 Biological Learning Rules.- I: Unsupervised Learning.- 3 Linear Feature Extraction: Infomax Principle.- 3.1 Principal Component Analysis: Statistical Approach.- 3.1.1 PCA and Diagonalization of the Covariance Matrix.- 3.1.2 PCA and Optimal Reconstruction.- 3.1.3 Neural Network Algorithms and PCA.- 3.2 Information Theoretic Approach: Infomax.- 3.2.1 Minimization of Information Loss Principle and Infomax Principle.- 3.2.2 Upper Bound of Information Loss.- 3.2.3 Information Capacity as a Lyapunov Function of the General Stochastic Approximation.- 4 Independent Component Analysis: General Formulation and Linear Case.- 4.1 ICA-Definition.- 4.2 General Criteria for ICA.- 4.2.1 Cumulant Expansion Based Criterion for ICA.- 4.2.2 Mutual Information as Criterion for ICA.- 4.3 Linear ICA.- 4.4 Gaussian Input Distribution and Linear ICA.- 4.4.1 Networks With Anti-Symmetric Lateral Connections.- 4.4.2 Networks With Symmetric Lateral Connections.- 4.4.3 Examples of Learning with Symmetric and Anti-Symmetric Networks.- 4.5 Learning in Gaussian ICA with Rotation Matrices: PCA.- 4.5.1 Relationship Between PCA and ICA in Gaussian Input Case.- 4.5.2 Linear Gaussian ICA and the Output Dimension Reduction.- 4.6 Linear ICA in Arbitrary Input Distribution.- 4.6.1 Some Properties of Cumulants at the Output of a Linear Transformation.- 4.6.2 The Edgeworth Expansion Criteria and Theorem 4.6.2.- 4.6.3 Algorithms for Output Factorization in the Non-Gaussian Case.- 4.6.4 Experimental Results of Linear ICA Algorithms in the Non-Gaussian Case.- 5 Nonlinear Feature Extraction: Boolean Stochastic Networks.- 5.1 Infomax Principle for Boltzmann Machines.- 5.1.1 Learning Model.- 5.1.2 Examples of Infomax Principle in Boltzmann Machine.- 5.2 Redundancy Minimization and Infomax for the Boltzmann Machine.- 5.2.1 Learning Model.- 5.2.2 Numerical Complexity of the Learning Rule.- 5.2.3 Factorial Learning Experiments.- 5.2.4 Receptive Fields Formation from a Retina.- 5.3 Appendix.- 6 Nonlinear Feature Extraction: Deterministic Neural Networks.- 6.1 Redundancy Reduction by Triangular Volume Conserving Architectures.- 6.1.1 Networks with Linear, Sigmoidal and Higher Order Activation Functions.- 6.1.2 Simulations and Results.- 6.2 Unsupervised Modeling of Chaotic Time Series.- 6.2.1 Dynamical System Modeling.- 6.3 Redundancy Reduction by General Symplectic Architectures.- 6.3.1 General Entropy Preserving Nonlinear Maps.- 6.3.2 Optimizing a Parameterized Symplectic Map.- 6.3.3 Density Estimation and Novelty Detection.- 6.4 Example: Theory of Early Vision.- 6.4.1 Theoretical Background.- 6.4.2 Retina Model.- II: Supervised Learning.- 7 Supervised Learning and Statistical Estimation.- 7.1 Statistical Parameter Estimation - Basic Definitions.- 7.1.1 Cramer-Rao Inequality for Unbiased Estimators.- 7.2 Maximum Likelihood Estimators.- 7.2.1 Maximum Likelihood and the Information Measure.- 7.3 Maximum A Posteriori Estimation.- 7.4 Extensions of MLE to Include Model Selection.- 7.4.1 Akaike's Information Theoretic Criterion (AIC).- 7.4.2 Minimal Description Length and Stochastic Complexity.- 7.5 Generalization and Learning on the Same Data Set.- 8 Statistical Physics Theory of Supervised Learning and Generalization.- 8.1 Statistical Mechanics Theory of Supervised Learning.- 8.1.1 Maximum Entropy Principle.- 8.1.2 Probability Inference with an Ensemble of Networks.- 8.1.3 Information Gain and Complexity Analysis.- 8.2 Learning with Higher Order Neural Networks.- 8.2.1 Partition Function Evaluation.- 8.2.2 Information Gain in Polynomial Networks.- 8.2.3 Numerical Experiments.- 8.3 Learning with General Feedforward Neural Networks.- 8.3.1 Partition Function Approximation.- 8.3.2 Numerical Experiments.- 8.4 Statistical Theory of Unsupervised and Supervised Factorial Learning.- 8.4.1 Statistical Theory of Unsupervised Factorial Learning.- 8.4.2 Duality Between Unsupervised and Maximum Likelihood Based Supervised Learning.- 9 Composite Networks.- 9.1 Cooperation and Specialization in Composite Networks.- 9.2 Composite Models as Gaussian Mixtures.- 10 Information Theory Based Regularizing Methods.- 10.1 Theoretical Framework.- 10.1.1 Network Complexity Regulation.- 10.1.2 Network Architecture and Learning Paradigm.- 10.1.3 Applications of the Mutual Information Based Penalty Term.- 10.2 Regularization in Stochastic Potts Neural Network.- 10.2.1 Neural Network Architecture.- 10.2.2 Simulations.- References.
Series Title: Perspectives in neural computing.
Responsibility: Gustavo Deco ; Dragan Obradovic.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/246816567> # An information theoretic approach to neural computing
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "246816567" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/39587045#Place/berlin_u_a> ; # Berlin u.a.
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/39587045#Topic/neuronales_netz> ; # Neuronales Netz
    schema:about <http://dewey.info/class/006.3/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/39587045#Topic/neuronales_netz_informationstheorie> ; # Neuronales Netz--Informationstheorie
    schema:about <http://experiment.worldcat.org/entity/work/data/39587045#Topic/informationstheorie> ; # Informationstheorie
    schema:about <http://experiment.worldcat.org/entity/work/data/39587045#Topic/informationstheorie_neuronales_netz> ; # Informationstheorie--Neuronales Netz
    schema:about <http://id.worldcat.org/fast/1036260> ; # Neural networks (Computer science)
    schema:about <http://experiment.worldcat.org/entity/work/data/39587045#Topic/kunstliche_intelligenz> ; # Künstliche Intelligenz
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/39587045#Person/obradovic_dragan> ; # Dragan Obradovic
    schema:creator <http://viaf.org/viaf/55051784> ; # Gustavo Deco
    schema:datePublished "1996" ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/39587045> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/39587045#Series/perspectives_in_neural_computing> ; # Perspectives in neural computing.
    schema:name "An information theoretic approach to neural computing" ;
    schema:productID "246816567" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/246816567#PublicationEvent/new_york_berlin_u_a_springer_1996> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/39587045#Agent/springer> ; # Springer
    schema:url <http://catdir.loc.gov/catdir/enhancements/fy0815/95048306-t.html> ;
    schema:url <http://www.gbv.de/dms/bowker/toc/9780387946665.pdf> ;
    schema:url <http://catdir.loc.gov/catdir/enhancements/fy0815/95048306-d.html> ;
    schema:url <http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=007212561&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA> ;
    schema:url <http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007212561&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA> ;
    schema:workExample <http://worldcat.org/isbn/9780387946665> ;
    umbel:isLike <http://d-nb.info/947195785> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GB9709905> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/246816567> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Person/obradovic_dragan> # Dragan Obradovic
    a schema:Person ;
    schema:familyName "Obradovic" ;
    schema:givenName "Dragan" ;
    schema:name "Dragan Obradovic" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Series/perspectives_in_neural_computing> # Perspectives in neural computing.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/246816567> ; # An information theoretic approach to neural computing
    schema:name "Perspectives in neural computing." ;
    schema:name "Perspectives in neural computing" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Topic/informationstheorie> # Informationstheorie
    a schema:Intangible ;
    schema:name "Informationstheorie" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Topic/informationstheorie_neuronales_netz> # Informationstheorie--Neuronales Netz
    a schema:Intangible ;
    schema:name "Informationstheorie--Neuronales Netz" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Topic/kunstliche_intelligenz> # Künstliche Intelligenz
    a schema:Intangible ;
    schema:name "Künstliche Intelligenz" ;
    .

<http://experiment.worldcat.org/entity/work/data/39587045#Topic/neuronales_netz_informationstheorie> # Neuronales Netz--Informationstheorie
    a schema:Intangible ;
    schema:name "Neuronales Netz--Informationstheorie" ;
    .

<http://id.worldcat.org/fast/1036260> # Neural networks (Computer science)
    a schema:Intangible ;
    schema:name "Neural networks (Computer science)" ;
    .

<http://viaf.org/viaf/55051784> # Gustavo Deco
    a schema:Person ;
    schema:familyName "Deco" ;
    schema:givenName "Gustavo" ;
    schema:name "Gustavo Deco" ;
    .

<http://worldcat.org/isbn/9780387946665>
    a schema:ProductModel ;
    schema:isbn "0387946667" ;
    schema:isbn "9780387946665" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.