skip to content
Instrumental methods of analysis Preview this item
ClosePreview this item
Checking...

Instrumental methods of analysis

Author: B Sivasankar
Publisher: New Delhi : Oxford University Press, 2012.
Edition/Format:   Book : English
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: B Sivasankar
ISBN: 9780198073918 0198073917
OCLC Number: 785077505
Description: xx, 555 p. : ill., charts ; 24 cm.
Contents: Machine generated contents note: 1.Introduction to Analytical Chemistry --
1.1.Scope and Applications of Analytical Chemistry --
1.2.Analytical Process --
1.3.Selection of Chemical Reactions for Analysis --
1.4.Equilibrium Methods --
1.5.Concepts of Chemical Equilibrium --
1.6.Types of Equilibria in Aqueous Media --
1.6.1.Self-dissociation of Water --
1.6.2.Acid-base Equilibria --
1.6.3.The pH Scale --
1.6.4.Hydrolysis of Salts and the pH of Salt Solutions --
1.6.5.Buffer Solutions --
1.6.6.Complexation Equilibria --
1.6.7.Solubility Equilibria --
1.6.8.Redox Equilibria --
1.7.Kinetic Methods of Analysis --
1.7.1.Experimental Methods for the Determination of Rate of Reaction --
1.7.2.Analytical Applications of Kinetic Methods --
1.8.Enzyme-catalysed Reactions --
1.8.1.Mechanistic and Kinetic Aspects of Enzyme-catalysed Reactions --
1.8.2.Applications of Enzymatic Analysis --
1.8.3.Substrates as Analytes --
1.8.4.Enzymes as Analytes --
1.9.Stoichiometric Calculations --
1.10.Expression of Concentrations of Solutions --
1.11.Reporting of Results --
2.Assessment of Analytical Data --
2.1.Introduction --
2.2.Definitions of Terms --
2.2.1.True Value --
2.2.2.Precision --
2.2.3.Accuracy --
2.2.4.Error --
2.2.5.Mean and Median --
2.2.6.Spread --
2.2.7.Deviation --
2.2.8.Population Standard Deviation --
2.2.9.Relative Standard Deviation and Coefficient of Variation --
2.2.10.Variance --
2.2.11.Significant Figures --
2.3.Types of Errors --
2.3.1.Gross Errors --
2.3.2.Systematic Errors or Determinate Errors --
2.3.3.Random Errors or Indeterminate Errors --
2.4.Statistical Treatment of Random Errors --
2.4.1.Distribution of Random Errors --
2.5.Evaluation of Experimental Results --
2.5.1.Reliability of Measurements --
2.5.2.Analysis of Data --
2.6.Comparison of Results --
2.6.1.F-test --
2.6.2.Student's r-test --
2.6.3.Paired t-test --
2.7.Standardization of Instrumental Methods of Analysis --
2.7.1.Limit of Detection and Limit of Quantitation --
2.7.2.Calibration Chart or Curve --
2.7.3.Method of Standard Addition --
2.7.4.Method of Least Squares --
3.Wet Chemical Methods of Analysis --
3.1.Introduction --
3.2.Volumetry --
3.3.Classification of Volumetric Methods --
3.4.Standard Solutions and Standard Substances --
3.5.Neutralization Titrations --
3.5.1.Theory of Acid-base Indicators --
3.5.2.Titration Curves --
3.5.3.Titration of a Strong Acid with a Strong Base --
3.5.4.Titration of a Weak Acid with a Strong Base --
3.5.5.Titration of a Weak Base with a Strong Acid --
3.5.6.Titration of a Weak Acid with a Weak Base --
3.5.7.Neutralization of Mixtures of Strong and Weak Acids or Strong and Weak Bases --
3.5.8.Titration of Polybasic Acids with a Strong Base --
3.5.9.Titrations in Non-aqueous Media --
3.5.10.Applications of Acid-base Titrations --
3.6.Precipitation Titrations --
3.6.1.Argentometry --
3.6.2.Detection of End Points --
3.7.Complexation Titrations --
3.7.1.Metal-EDTA Equilibrium --
3.7.2.Titration Curves --
3.7.3.Metal Ion Indicators --
3.7.4.Theory of Metal Ion Indicators --
3.7.5.Types of EDTA Titrations --
3.7.6.Applications of EDTA Titrations --
3.8.Redox Titrations --
3.8.1.Redox Indicators --
3.8.2.Permanganometry --
3.8.3.Dichrometry --
3.8.4.Iodometry --
3.8.5.Applications of Redox Titrations --
3.9.Gravimetry --
3.10.Volatilization Methods --
3.11.Precipitation Methods --
3.11.1.Theoretical Principles of Precipitation Methods --
3.11.2.Criteria for an Ideal Gravimetric Estimation --
3.11.3.Precipitating Agents --
3.11.4.Factors Affecting Solubility of Precipitates --
3.11.5.Mechanism of Formation of Precipitates --
3.11.6.Colloidal Precipitates --
3.11.7.Contamination of Precipitates --
3.11.8.Practical Aspects --
3.11.9.Homogeneous Precipitation --
3.11.10.Examples of Gravimetric Estimations --
3.12.Analysis of Alloys, Ores, and Complex Materials by Wet Chemical Methods --
3.12.1.Analysis of an Iron Ore --
3.12.2.Analysis of Brass --
3.12.3.Analysis of Solder --
3.12.4.Analysis of Cement --
4.Optical Methods --
4.1.Introduction --
4.2.Refraction --
4.3.Refractive Index --
4.3.1.Measurement of Refractive Index --
4.3.2.Abbe Refractometer --
4.3.3.Immersion Refractometer --
4.3.4.Applications of Refractometry --
4.4.Polarimetry --
4.4.1.Polarization of Light --
4.4.2.Polarizers --
4.4.3.Polarimetry Theory --
4.4.4.Polarimeter --
4.4.5.Applications of Polarimetry --
4.5.Optical Rotatory Dispersion and Circular Dichroism Spectra --
5.Microscopy --
5.1.Introduction --
5.2.Optical Microscope --
5.2.1.Compound Light Microscope --
5.3.Imaging Techniques --
5.3.1.Bright-field Microscopy --
5.3.2.Dark-field Microscopy --
5.3.3.Phase-contrast Microscopy --
5.3.4.Fluorescence Microscope --
5.3.5.Confocal Microscopy --
5.3.6.Polarizing Microscope --
5.3.7.Flow Cytometry --
5.4.Electron Microscope --
5.4.1.Transmission Electron Microscope --
5.4.2.Scanning Electron Microscope --
5.4.3.Scanning Transmission Electron Microscope --
5.5.Scanning Probe Microscopy --
5.5.1.Scanning Tunnelling Microscope --
5.5.2.Atomic Force Microscope --
6.Spectroscopic Methods of Analysis --
6.1.Introduction --
6.2.Electromagnetic Radiation --
6.2.1.Electromagnetic Spectrum --
6.3.Energy Levels in Atoms --
6.3.1.Interaction of Electromagnetic Radiation with Atoms --
6.4.Energy Levels in Molecules --
6.4.1.Interaction of Electromagnetic Radiation with Molecules --
6.5.Classification of Spectroscopic Techniques --
6.6.Absorption and Emission Spectra --
6.6.1.Width of Spectral Lines --
6.6.2.Intensity of Spectral Lines --
6.7.Analytical Applications of Spectroscopy --
6.7.1.Beer-Lambert Law --
6.7.2.Applications of Beer-Lambert Law --
6.7.3.Limitations of Beer-Lambert Law --
6.8.Visual Colorimetry --
6.8.1.Quantitative Analysis --
6.8.2.Instruments for Optical Spectrometry and Measurement of Absorbance --
6.9.Spectrometers and their Components --
6.9.1.Radiation Sources --
6.9.2.Dispersing Devices --
6.9.3.Sample Holders --
6.9.4.Radiation Detectors --
6.9.5.Signal Processors and Display Units --
6.10.Configurations of Spectrometers --
6.11.Fourier Transform Spectrometers --
7.Atomic Spectroscopy --
7.1.Introduction --
7.2.Classification of Atomic Spectrometric Methods --
7.3.Atomization --
7.4.Atomization Methods --
7.4.1.Flame Atomization --
7.4.2.Electrothermal Atomization --
7.4.3.Glow Discharge Atomization --
7.4.4.Cold-vapour Atomization --
7.4.5.Hydride Atomization --
7.5.Atomic Absorption Spectrometry --
7.5.1.Principle --
7.5.2.Atomic Absorption Spectrometer --
7.5.3.Working of AAS --
7.5.4.Interferences in Atomic Absorption Measurements --
1.6.Atomic Emission Spectroscopy --
7.6.1.Exeitation Methods --
7.7.Flame Emission Spectrometry --
7.8.Plasma Emission Spectrometry --
7.8.1.Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) --
7.8.2.Inductively Coupled Plasma-mass Spectrometry --
7.8.3.Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES) --
7.8.4.General Features of Plasma Source Spectrometers --
7.9.Atomic Fluorescence Spectroscopy --
8.Molecular Spectroscopy --
8.1.Introduction --
8.2.UV-visible Spectroscopy --
8.2.1.Electronic Spectra of Molecules --
8.2.2.Franck-Condon Principle --
8.2.3.Electronic Transitions in Organic Molecules --
8.2.4.Factors Affecting Absorption Bands --
8.2.5.Electronic Transitions in Inorganic Species --
8.2.6.UV-visible Spectrophotometer --
8.2.7.Analytical Applications of UV-visible Spectroscopy --
8.2.8.Simultaneous Determinations --
8.2.9.Photometric Titrations --
8.2.10.Examples of Spectrophotometric Determinations --
8.3.Infrared Spectrophotometry --
8.3.1.Infrared Region --
8.3.2.Molecular Vibrations --
8.3.3.Vibrational Frequencies and IR Absorption Bands --
8.3.4.Infrared Spectrum --
8.3.5.IR Spectrophotometer --
8.3.6.Sample Preparation --
8.3.7.Applications --
8.3.8.Diffuse Reflectance Infrared Fourier Transform Spectrometry --
8.3.9.Attenuated Total Reflectance Spectroscopy --
8.3.10.Near-infrared Spectroscopy --
8.3.11.Far-infrared Spectroscopy --
8.4.Raman Spectroscopy --
8.4.1.Comparison of Raman and Infrared Spectra --
8.4.2.Raman Spectrometer --
8.4.3.Applications of Raman Spectroscopy --
8.4.4.Resonance Raman Spectroscopy --
8.5.Microwave Spectrometry --
8.5.1.Microwave Spectrometer --
8.6.Molecular Fluorescence and Phosphorescence --
8.6.1.Molecular Fluorescence Spectroscopy --
8.6.2.Fluorescent Molecules --
8.6.3.Fluorescence and Molecular Structure --
8.6.4.Factors Affecting Fluorescence Emission --
8.6.5.Analytical Aspects of Fluorescence Emission --
8.6.6.Fluorometers --
8.6.7.Applications of Fluorescence Measurements --
8.6.8.Molecular Phosphorescence Spectroscopy --
8.7.Chemiluminescence --
8.8.Turbidimetry and Nephelometry --
9.Magnetic Resonance Spectroscopy --
9.1.Introduction --
9.2.Nuclear Magnetic Resonance Spectroscopy --
9.2.1.Theory of Nuclear Magnetic Resonance --
9.2.2.Nuclear Energy Levels in an External Magnetic Field --
9.2.3.Magnetic Resonance --
9.2.4.Classical Model of NMR Absorption --
9.2.5.Relaxation Processes --
9.3.NMR Spectrometers --
9.3.1.NMR Spectrum --
9.4.Environmental Effects --
9.4.1.Chemical Shift --
9.4.2.Diamagnetic Anisotropy and Chemical Shift --
9.4.3.Spin-spin Coupling --
9.4.4.Interpretation of First-order Spectra --
9.4.5.Simplification of Complex Spectra --
9.5.Nuclear Magnetic Resonance Spectroscopy of Nuclei other than Hydrogen --
9.6.Carbon-13 NMR Spectroscopy --
9.7.Applications of NMR Spectroscopy --
9.8.Fourier Transform NMR Spectroscopy --
9.9.Magic Angle Spinning NMR Spectroscopy --
9.10.Electron Spin Resonance Spectroscopy --
9.10.1.ESR Spectrometer --
9.10.2.ESR Spectrum --
9.10.3.Hyperfine and Fine Structures in ESR Spectra --
9.10.4.Double Resonance --
9.10.5.Applications of ESR Spectroscopy --
10.Mass Spectrometry --
10.1.Introduction --
10.2.Principle --
10.3.Mass Spectrometer --
10.3.1.Sample Inlet --
10.3.2.Ionization Source and Acceleration Chamber --
10.3.3.Mass Analyser --
10.3.4.Detector --
10.3.5.Recording System --
10.4.Ionization Methods --
10.4.1.Electron Impact Ionization --
Note continued: 10.4.2.Spark Ionization --
10.4.3.Chemical Ionization --
10.4.4.Field Ionization --
10.4.5.Field Desorption --
10.4.6.Fast Atom/Ion Bombardment --
10.4.7.Electrospray Ionization --
10.4.8.Matrix-assisted Laser Desorption/Ionization --
10.5.Other Types of Mass Spectrometers --
10.5.1.Quadrupole Mass Analyser or Spectrometer --
10.5.2.Time of Flight Mass Spectrometer --
10.5.3.Ion Trap Analyser (Spectrometer) --
10.5.4.Fourier Transform Mass Spectrometer --
10.6.Tandem Mass Spectrometry --
10.7.Interpretation of Mass Spectrum --
10.8.Applications --
10.8.1.Molecular Weight Determination --
10.8.2.Determination of Molecular Formula --
10.8.3.Structural Information --
10.8.4.Identification of the Sample Compound --
10.8.5.Applications in the Study of Proteins and Nucleic Acids --
11.X-ray Methods --
11.1.Introduction --
11.2.X-ray Spectroscopic Instruments --
11.2.1.Production of X-rays by Electron Bombardment --
11.2.2.X-rays from Radioactive Sources --
11.2.3.Filters --
11.2.4.Monochroniator, Collimator, and Goniometer Assembly --
11.2.5.Detectors --
11.3.Classification of X-ray Methods --
11.4.X-ray Absorption Spectroscopy --
11.4.1.Absorption of X-rays --
11.4.2.X-ray Absorption Spectrometer --
11.4.3.Applications of X-ray Absorption Spectrometry --
11.5.X-ray Fluorescence Spectroscopy --
11.5.1.Fluorescence Emission of X-rays --
11.5.2.X-ray Fluorescence Spectrometer --
11.5.3.Applications of X-ray Fluorescence Spectroscopy --
11.6.X-ray Emission and Electron Probe Microanalysis --
11.7.X-ray Diffraction Methods --
12.Separation Methods --
12.1.An Overview of Separation Methods --
12.2.Solvent Extraction --
12.2.1.Principles of Liquid-liquid Extraction --
12.2.2.Selectivity of Extraction --
12.2.3.Parameters Affecting the Extraction Process --
12.2.4.Extraction Methods --
12.2.5.Modes of Extraction --
12.3.Aqueous Two-phase Extraction --
12.3.1.Aqueous Two-phase Systems --
12.3.2.Theoretical Principles of Aqueous Two-phase Extractions --
12.3.3.Aqueous Two-phase Extraction Process --
12.4.Reversed Micellar Extraction --
12.5.Supercritical Fluid Extraction --
12.6.Solid Phase Extraction --
12.6.1.Solid Phase Micro Extraction --
12.7.Ion-Exchange Separation --
12.7.1.Ion Exchangers --
12.7.2.Ion-Exchange Equilibrium --
12.7.3.Capacity of Ion Exchangers --
12.7.4.Regeneration of Ion Exchangers --
12.8.Filtration --
12.9.Membrane Separation Techniques --
12.9.1.Theory of Membrane Separation --
12.9.2.Retention Coefficient --
12.9.3.Factors Affecting Membrane Separation --
12.9.4.Membranes and Their Characteristics --
12.9.5.Equipment for Membrane Separation --
12.9.6.Membrane Separation Methods --
12.10.Crystallization --
12.11.Precipitation --
12.12.Lyophilization --
13.Chromatographic Separations --
13.1.Introduction --
13.2.Classification of Chromatographic Methods --
13.3.Column Chromatography --
13.3.1.Principle of Separation in Column Chromatography --
13.4.Chromatographic Parameters --
13.4.1.Retention Time --
13.4.2.Retention Volume --
13.4.3.Relative Retention --
13.4.4.Column Efficiency --
13.4.5.Resolution --
13.4.6.Peak Asymmetry --
13.4.7.Broadening of Chromatographic Peaks --
13.4.8.Optimization of Column Performance --
13.4.9.Applications of Chromatography --
13.5.Liquid Chromatography --
13.5.1.Practice of Liquid Chromatography --
13.6.Adsorption Chromatography --
13.7.Partition Chromatography --
13.7.1.Normal Phase Chromatography --
13.7.2.Reversed Phase Chromatography --
13.7.3.Hydrophobic Interaction Chromatography --
13.8.Ion-exchange Chromatography --
13.8.1.Ion Chromatography --
13.9.Size-exclusion Chromatography --
13.10.Affinity Chromatography --
13.11.High-performance Liquid Chromatography --
13.11.1.Principle --
13.11.2.HPLC Instrument --
13.11.3.Practice of HPLC --
13.11.4.Applications of HPLC --
13.11.5.HPLC-mass Spectrometry (HPLC-MS) --
13.12.Supercritical Fluid Chromatography --
13.12.1.Supercritical Fluid Solvents and Their Properties --
13.12.2.SCFC Instrument --
13.13.Gas Chromatography --
13.13.1.Principle --
13.13.2.GC Instrument --
13.13.3.Hyphenated or Coupled Chromatographic Techniques --
13.13.4.Practice of GC --
13.13.5.Qualitative Analysis by Gas Chromatography --
13.13.6.Quantitative Analysis by Gas Chromatography --
13.14.Planar Chromatographic Techniques --
13.14.1.Paper Chromatography --
13.14.2.Thin Layer Chromatography --
13.14.3.Two-dimensional Planar Chromatography --
13.14.4.High-performance Thin Layer Chromatography --
13.14.5.Applications of Planar Chromatographic Techniques --
13.14.6.Developments in Planar Chromatographic Techniques --
14.Electrophoresis and Related Techniques of Separation --
14.1.Introduction --
14.2.Electrophoresis --
14.2.1.Free Solution Electrophoresis --
14.2.2.Zone Electrophoresis --
14.2.3.Polyacrylamide Gel Electrophoresis --
14.2.4.Native Gel Electrophoresis --
14.2.5.Disc Gel Electrophoresis --
14.2.6.Sodium Dodecyl Sulphatepolyacrylamide Gel Electrophoresis (SDS-PAGE) --
14.2.7.Agarose Gel Electrophoresis --
14.2.8.Parameters Affecting Gel Electrophoretic Separations --
14.2.9.Detection of Proteins and Nucleic Acids in Electrophoresis Gels --
14.2.10.Pulsed Field Gel Electrophoresis --
14.2.11.Applications of Electrophoresis Techniques --
14.3.Immunoelectrophoresis --
14.4.Capillary Electrophoresis --
14.4.1.Micellar Electrokinetic Capillary Chromatography --
14.4.2.Capillary Gel Electrophoresis --
14.4.3.Capillary Electrochromatography --
14.5.Isoelectric Focusing --
14.6.Two-dimensional Electrophoresis --
14.7.Isotachophoresis --
15.Centrifugation --
15.1.Introduction --
15.2.Centrifugal Force --
15.3.Principles of Centrifugal Sedimentation --
15.4.Centrifuges --
15.4.1.Rotors --
15.5.Centrifugation Techniques --
15.6.Differential Centrifugation --
15.7.Density Gradient Centrifugation --
15.7.1.Sample Application and Harvesting Samples from Gradients --
15.7.2.Density Gradient Centrifugation Techniques --
15.8.Centrifugal Elutriation --
15.9.Ultracentrifuge --
15.9.1.Analytical Ultracentrifuge --
15.9.2.Applications of Analytical Ultracentrifuge --
15.9.3.Determination of Molecular Weight of Macromolecules --
15.9.4.Determination of Purity of Macromolecules --
15.9.5.Study of Conformation Changes in Macromolecules --
15.10.Preparative Ultracentrifuge --
16.Electroanalytical Methods --
16.1.Introduction --
16.2.Classification of Electroanalytical Techniques --
16.3.Conductometry --
16.3.1.Measurement of Conductance --
16.3.2.Applications of Conductance Measurements --
16.4.Conductance Titrations --
16.4.1.Acid-base Reactions --
16.4.2.Displacement Titrations --
16.4.3.Precipitation Titrations --
16.4.4.Complex-formation Reactions --
16.4.5.Titrations in Non-aqueous Media --
16.5.Oscillometric or High-frequency Titrations --
16.6.Principles of Electrogravimetry and Coulometry --
16.7.Electrogravimetry --
16.8.Coulometry --
16.8.1.Constant Potential Coulometry --
16.8.2.Constant Current Coulometry --
16.9.Potentiometry --
16.9.1.Thermodynamic Significance of Electrode Potentials --
16.9.2.Indicator Electrodes --
16.9.3.Reference Electrodes --
16.9.4.EMF Measurement --
16.9.5.Standard Weston Cadmium Cell --
16.10.Applications of EMF Measurements --
16.10.1.Determination of pH by Glass Electrode --
16.10.2.pH Titrations --
16.10.3.Potentiometric Titrations --
16.11.Ion Selective Electrodes --
16.11.1.Different Types of Ion Selective Electrodes --
16.12.Polarography --
16.12.1.Quantitative Analysis by Polarography --
16.12.2.Modern Polarographic Techniques --
16.13.Amperometric Titrations --
16.13.1.Amperometric Titrations with One Polarizable Indicator Electrode --
16.13.2.Biamperometric Titrations --
16.13.3.A Few Important Applications of Amperometry --
16.13.4.Oxygen Sensor --
16.13.5.Biosensors --
17.Thermal Analytical Methods --
17.1.Introduction --
17.2.Thermogravimetry --
17.2.1.TG Instrument --
17.2.2.Thermogram --
17.2.3.Applications of Thermogravimetry --
17.3.Differential Thermal Analysis --
17.3.1.DTA Instrument --
17.3.2.DTA Thermogram --
17.4.Differential Scanning Calorimetry --
17.4.1.DSC Instrument --
17.4.2.Applications of DTA and DSC --
17.5.Thermomechanical Analysis --
17.5.1.TMA Instrument --
17.5.2.Applications of TMA --
17.6.Dynamic Mechanical Analysis --
17.6.1.DMA Instrument --
17.6.2.DMA Applications --
17.7.Evolved Gas Analysis --
17.7.1.Pyrolysis Gas Chromatograph Instrument --
18.Radiochemical Methods of Analysis --
18.1.Introduction --
18.2.Origin of Radioactivity --
18.2.1.Decay Modes of Radioactive Isotopes --
18.2.2.Kinetics of Radioactive Decay Process --
18.2.3.Units of Radioactivity --
18.3.Measurement of Radioactivity --
18.3.1.Detectors Based on Ionization --
18.3.2.Detectors Based on Photo Effect --
18.3.3.Detector Based on Chemical Reaction --
18.4.Amplifiers and Other Electronic Equipment --
18.5.Pulse Height Analyser --
18.6.Analytical Applications of Radioisotopes --
18.6.1.Isotope Dilution Method --
18.6.2.Activation Analysis --
18.6.3.Radioimmunoassay --
18.6.4.Autoradiography --
19.Surface Analytical Methods --
19.1.Introduction --
19.2.Classification of Surface Analytical Methods --
19.3.Methods Based on Adsorption-desorption of Probe Molecules --
19.3.1.Physisorption --
19.3.2.Chemisorption --
19.4.Vibrational Spectroscopic Techniques for Surface Studies --
19.4.1.IR Spectroscopy --
19.4.2.Electron Energy Loss Spectroscopy --
19.4.3.Reflection-absorption Infrared Spectroscopy --
19.5.Electronic Spectroscopic Methods --
19.5.1.Electron Spectroscopy for Chemical Analysis --
19.5.2.Auger Electron Spectroscopy --
19.5.3.Ion Scattering Spectrometry --
19.5.4.Secondary Ion Mass Spectrometry --
19.6.X-ray Methods --
19.7.Thermal Methods --
19.7.1.Temperature-programmed Desorption --
19.7.2.Temperature-programmed Reduction --
19.7.3.Desorption Studies by TG, DTA, and DSC.
Responsibility: B. Sivasankar.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (1)

View most popular tags as: tag list | tag cloud

Similar Items

Related Subjects:(1)

User lists with this item (2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/785077505>
library:oclcnum"785077505"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/785077505>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2012"
schema:description"Machine generated contents note: 1.Introduction to Analytical Chemistry -- 1.1.Scope and Applications of Analytical Chemistry -- 1.2.Analytical Process -- 1.3.Selection of Chemical Reactions for Analysis -- 1.4.Equilibrium Methods -- 1.5.Concepts of Chemical Equilibrium -- 1.6.Types of Equilibria in Aqueous Media -- 1.6.1.Self-dissociation of Water -- 1.6.2.Acid-base Equilibria -- 1.6.3.The pH Scale -- 1.6.4.Hydrolysis of Salts and the pH of Salt Solutions -- 1.6.5.Buffer Solutions -- 1.6.6.Complexation Equilibria -- 1.6.7.Solubility Equilibria -- 1.6.8.Redox Equilibria -- 1.7.Kinetic Methods of Analysis -- 1.7.1.Experimental Methods for the Determination of Rate of Reaction -- 1.7.2.Analytical Applications of Kinetic Methods -- 1.8.Enzyme-catalysed Reactions -- 1.8.1.Mechanistic and Kinetic Aspects of Enzyme-catalysed Reactions -- 1.8.2.Applications of Enzymatic Analysis -- 1.8.3.Substrates as Analytes -- 1.8.4.Enzymes as Analytes -- 1.9.Stoichiometric Calculations -- 1.10.Expression of Concentrations of Solutions -- 1.11.Reporting of Results -- 2.Assessment of Analytical Data -- 2.1.Introduction -- 2.2.Definitions of Terms -- 2.2.1.True Value -- 2.2.2.Precision -- 2.2.3.Accuracy -- 2.2.4.Error -- 2.2.5.Mean and Median -- 2.2.6.Spread -- 2.2.7.Deviation -- 2.2.8.Population Standard Deviation -- 2.2.9.Relative Standard Deviation and Coefficient of Variation -- 2.2.10.Variance -- 2.2.11.Significant Figures -- 2.3.Types of Errors -- 2.3.1.Gross Errors -- 2.3.2.Systematic Errors or Determinate Errors -- 2.3.3.Random Errors or Indeterminate Errors -- 2.4.Statistical Treatment of Random Errors -- 2.4.1.Distribution of Random Errors -- 2.5.Evaluation of Experimental Results -- 2.5.1.Reliability of Measurements -- 2.5.2.Analysis of Data -- 2.6.Comparison of Results -- 2.6.1.F-test -- 2.6.2.Student's r-test -- 2.6.3.Paired t-test -- 2.7.Standardization of Instrumental Methods of Analysis -- 2.7.1.Limit of Detection and Limit of Quantitation -- 2.7.2.Calibration Chart or Curve -- 2.7.3.Method of Standard Addition -- 2.7.4.Method of Least Squares -- 3.Wet Chemical Methods of Analysis -- 3.1.Introduction -- 3.2.Volumetry -- 3.3.Classification of Volumetric Methods -- 3.4.Standard Solutions and Standard Substances -- 3.5.Neutralization Titrations -- 3.5.1.Theory of Acid-base Indicators -- 3.5.2.Titration Curves -- 3.5.3.Titration of a Strong Acid with a Strong Base -- 3.5.4.Titration of a Weak Acid with a Strong Base -- 3.5.5.Titration of a Weak Base with a Strong Acid -- 3.5.6.Titration of a Weak Acid with a Weak Base -- 3.5.7.Neutralization of Mixtures of Strong and Weak Acids or Strong and Weak Bases -- 3.5.8.Titration of Polybasic Acids with a Strong Base -- 3.5.9.Titrations in Non-aqueous Media -- 3.5.10.Applications of Acid-base Titrations -- 3.6.Precipitation Titrations -- 3.6.1.Argentometry -- 3.6.2.Detection of End Points -- 3.7.Complexation Titrations -- 3.7.1.Metal-EDTA Equilibrium -- 3.7.2.Titration Curves -- 3.7.3.Metal Ion Indicators -- 3.7.4.Theory of Metal Ion Indicators -- 3.7.5.Types of EDTA Titrations -- 3.7.6.Applications of EDTA Titrations -- 3.8.Redox Titrations -- 3.8.1.Redox Indicators -- 3.8.2.Permanganometry -- 3.8.3.Dichrometry -- 3.8.4.Iodometry -- 3.8.5.Applications of Redox Titrations -- 3.9.Gravimetry -- 3.10.Volatilization Methods -- 3.11.Precipitation Methods -- 3.11.1.Theoretical Principles of Precipitation Methods -- 3.11.2.Criteria for an Ideal Gravimetric Estimation -- 3.11.3.Precipitating Agents -- 3.11.4.Factors Affecting Solubility of Precipitates -- 3.11.5.Mechanism of Formation of Precipitates -- 3.11.6.Colloidal Precipitates -- 3.11.7.Contamination of Precipitates -- 3.11.8.Practical Aspects -- 3.11.9.Homogeneous Precipitation -- 3.11.10.Examples of Gravimetric Estimations -- 3.12.Analysis of Alloys, Ores, and Complex Materials by Wet Chemical Methods -- 3.12.1.Analysis of an Iron Ore -- 3.12.2.Analysis of Brass -- 3.12.3.Analysis of Solder -- 3.12.4.Analysis of Cement -- 4.Optical Methods -- 4.1.Introduction -- 4.2.Refraction -- 4.3.Refractive Index -- 4.3.1.Measurement of Refractive Index -- 4.3.2.Abbe Refractometer -- 4.3.3.Immersion Refractometer -- 4.3.4.Applications of Refractometry -- 4.4.Polarimetry -- 4.4.1.Polarization of Light -- 4.4.2.Polarizers -- 4.4.3.Polarimetry Theory -- 4.4.4.Polarimeter -- 4.4.5.Applications of Polarimetry -- 4.5.Optical Rotatory Dispersion and Circular Dichroism Spectra -- 5.Microscopy -- 5.1.Introduction -- 5.2.Optical Microscope -- 5.2.1.Compound Light Microscope -- 5.3.Imaging Techniques -- 5.3.1.Bright-field Microscopy -- 5.3.2.Dark-field Microscopy -- 5.3.3.Phase-contrast Microscopy -- 5.3.4.Fluorescence Microscope -- 5.3.5.Confocal Microscopy -- 5.3.6.Polarizing Microscope -- 5.3.7.Flow Cytometry -- 5.4.Electron Microscope -- 5.4.1.Transmission Electron Microscope -- 5.4.2.Scanning Electron Microscope -- 5.4.3.Scanning Transmission Electron Microscope -- 5.5.Scanning Probe Microscopy -- 5.5.1.Scanning Tunnelling Microscope -- 5.5.2.Atomic Force Microscope -- 6.Spectroscopic Methods of Analysis -- 6.1.Introduction -- 6.2.Electromagnetic Radiation -- 6.2.1.Electromagnetic Spectrum -- 6.3.Energy Levels in Atoms -- 6.3.1.Interaction of Electromagnetic Radiation with Atoms -- 6.4.Energy Levels in Molecules -- 6.4.1.Interaction of Electromagnetic Radiation with Molecules -- 6.5.Classification of Spectroscopic Techniques -- 6.6.Absorption and Emission Spectra -- 6.6.1.Width of Spectral Lines -- 6.6.2.Intensity of Spectral Lines -- 6.7.Analytical Applications of Spectroscopy -- 6.7.1.Beer-Lambert Law -- 6.7.2.Applications of Beer-Lambert Law -- 6.7.3.Limitations of Beer-Lambert Law -- 6.8.Visual Colorimetry -- 6.8.1.Quantitative Analysis -- 6.8.2.Instruments for Optical Spectrometry and Measurement of Absorbance -- 6.9.Spectrometers and their Components -- 6.9.1.Radiation Sources -- 6.9.2.Dispersing Devices -- 6.9.3.Sample Holders -- 6.9.4.Radiation Detectors -- 6.9.5.Signal Processors and Display Units -- 6.10.Configurations of Spectrometers -- 6.11.Fourier Transform Spectrometers -- 7.Atomic Spectroscopy -- 7.1.Introduction -- 7.2.Classification of Atomic Spectrometric Methods -- 7.3.Atomization -- 7.4.Atomization Methods -- 7.4.1.Flame Atomization -- 7.4.2.Electrothermal Atomization -- 7.4.3.Glow Discharge Atomization -- 7.4.4.Cold-vapour Atomization -- 7.4.5.Hydride Atomization -- 7.5.Atomic Absorption Spectrometry -- 7.5.1.Principle -- 7.5.2.Atomic Absorption Spectrometer -- 7.5.3.Working of AAS -- 7.5.4.Interferences in Atomic Absorption Measurements -- 1.6.Atomic Emission Spectroscopy -- 7.6.1.Exeitation Methods -- 7.7.Flame Emission Spectrometry -- 7.8.Plasma Emission Spectrometry -- 7.8.1.Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) -- 7.8.2.Inductively Coupled Plasma-mass Spectrometry -- 7.8.3.Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES) -- 7.8.4.General Features of Plasma Source Spectrometers -- 7.9.Atomic Fluorescence Spectroscopy -- 8.Molecular Spectroscopy -- 8.1.Introduction -- 8.2.UV-visible Spectroscopy -- 8.2.1.Electronic Spectra of Molecules -- 8.2.2.Franck-Condon Principle -- 8.2.3.Electronic Transitions in Organic Molecules -- 8.2.4.Factors Affecting Absorption Bands -- 8.2.5.Electronic Transitions in Inorganic Species -- 8.2.6.UV-visible Spectrophotometer -- 8.2.7.Analytical Applications of UV-visible Spectroscopy -- 8.2.8.Simultaneous Determinations -- 8.2.9.Photometric Titrations -- 8.2.10.Examples of Spectrophotometric Determinations -- 8.3.Infrared Spectrophotometry -- 8.3.1.Infrared Region -- 8.3.2.Molecular Vibrations -- 8.3.3.Vibrational Frequencies and IR Absorption Bands -- 8.3.4.Infrared Spectrum -- 8.3.5.IR Spectrophotometer -- 8.3.6.Sample Preparation -- 8.3.7.Applications -- 8.3.8.Diffuse Reflectance Infrared Fourier Transform Spectrometry -- 8.3.9.Attenuated Total Reflectance Spectroscopy -- 8.3.10.Near-infrared Spectroscopy -- 8.3.11.Far-infrared Spectroscopy -- 8.4.Raman Spectroscopy -- 8.4.1.Comparison of Raman and Infrared Spectra -- 8.4.2.Raman Spectrometer -- 8.4.3.Applications of Raman Spectroscopy -- 8.4.4.Resonance Raman Spectroscopy -- 8.5.Microwave Spectrometry -- 8.5.1.Microwave Spectrometer -- 8.6.Molecular Fluorescence and Phosphorescence -- 8.6.1.Molecular Fluorescence Spectroscopy -- 8.6.2.Fluorescent Molecules -- 8.6.3.Fluorescence and Molecular Structure -- 8.6.4.Factors Affecting Fluorescence Emission -- 8.6.5.Analytical Aspects of Fluorescence Emission -- 8.6.6.Fluorometers -- 8.6.7.Applications of Fluorescence Measurements -- 8.6.8.Molecular Phosphorescence Spectroscopy -- 8.7.Chemiluminescence -- 8.8.Turbidimetry and Nephelometry -- 9.Magnetic Resonance Spectroscopy -- 9.1.Introduction -- 9.2.Nuclear Magnetic Resonance Spectroscopy -- 9.2.1.Theory of Nuclear Magnetic Resonance -- 9.2.2.Nuclear Energy Levels in an External Magnetic Field -- 9.2.3.Magnetic Resonance -- 9.2.4.Classical Model of NMR Absorption -- 9.2.5.Relaxation Processes -- 9.3.NMR Spectrometers -- 9.3.1.NMR Spectrum -- 9.4.Environmental Effects -- 9.4.1.Chemical Shift -- 9.4.2.Diamagnetic Anisotropy and Chemical Shift -- 9.4.3.Spin-spin Coupling -- 9.4.4.Interpretation of First-order Spectra -- 9.4.5.Simplification of Complex Spectra -- 9.5.Nuclear Magnetic Resonance Spectroscopy of Nuclei other than Hydrogen -- 9.6.Carbon-13 NMR Spectroscopy -- 9.7.Applications of NMR Spectroscopy -- 9.8.Fourier Transform NMR Spectroscopy -- 9.9.Magic Angle Spinning NMR Spectroscopy -- 9.10.Electron Spin Resonance Spectroscopy -- 9.10.1.ESR Spectrometer -- 9.10.2.ESR Spectrum -- 9.10.3.Hyperfine and Fine Structures in ESR Spectra -- 9.10.4.Double Resonance -- 9.10.5.Applications of ESR Spectroscopy -- 10.Mass Spectrometry -- 10.1.Introduction -- 10.2.Principle -- 10.3.Mass Spectrometer -- 10.3.1.Sample Inlet -- 10.3.2.Ionization Source and Acceleration Chamber -- 10.3.3.Mass Analyser -- 10.3.4.Detector -- 10.3.5.Recording System -- 10.4.Ionization Methods -- 10.4.1.Electron Impact Ionization --"@en
schema:description"Note continued: 10.4.2.Spark Ionization -- 10.4.3.Chemical Ionization -- 10.4.4.Field Ionization -- 10.4.5.Field Desorption -- 10.4.6.Fast Atom/Ion Bombardment -- 10.4.7.Electrospray Ionization -- 10.4.8.Matrix-assisted Laser Desorption/Ionization -- 10.5.Other Types of Mass Spectrometers -- 10.5.1.Quadrupole Mass Analyser or Spectrometer -- 10.5.2.Time of Flight Mass Spectrometer -- 10.5.3.Ion Trap Analyser (Spectrometer) -- 10.5.4.Fourier Transform Mass Spectrometer -- 10.6.Tandem Mass Spectrometry -- 10.7.Interpretation of Mass Spectrum -- 10.8.Applications -- 10.8.1.Molecular Weight Determination -- 10.8.2.Determination of Molecular Formula -- 10.8.3.Structural Information -- 10.8.4.Identification of the Sample Compound -- 10.8.5.Applications in the Study of Proteins and Nucleic Acids -- 11.X-ray Methods -- 11.1.Introduction -- 11.2.X-ray Spectroscopic Instruments -- 11.2.1.Production of X-rays by Electron Bombardment -- 11.2.2.X-rays from Radioactive Sources -- 11.2.3.Filters -- 11.2.4.Monochroniator, Collimator, and Goniometer Assembly -- 11.2.5.Detectors -- 11.3.Classification of X-ray Methods -- 11.4.X-ray Absorption Spectroscopy -- 11.4.1.Absorption of X-rays -- 11.4.2.X-ray Absorption Spectrometer -- 11.4.3.Applications of X-ray Absorption Spectrometry -- 11.5.X-ray Fluorescence Spectroscopy -- 11.5.1.Fluorescence Emission of X-rays -- 11.5.2.X-ray Fluorescence Spectrometer -- 11.5.3.Applications of X-ray Fluorescence Spectroscopy -- 11.6.X-ray Emission and Electron Probe Microanalysis -- 11.7.X-ray Diffraction Methods -- 12.Separation Methods -- 12.1.An Overview of Separation Methods -- 12.2.Solvent Extraction -- 12.2.1.Principles of Liquid-liquid Extraction -- 12.2.2.Selectivity of Extraction -- 12.2.3.Parameters Affecting the Extraction Process -- 12.2.4.Extraction Methods -- 12.2.5.Modes of Extraction -- 12.3.Aqueous Two-phase Extraction -- 12.3.1.Aqueous Two-phase Systems -- 12.3.2.Theoretical Principles of Aqueous Two-phase Extractions -- 12.3.3.Aqueous Two-phase Extraction Process -- 12.4.Reversed Micellar Extraction -- 12.5.Supercritical Fluid Extraction -- 12.6.Solid Phase Extraction -- 12.6.1.Solid Phase Micro Extraction -- 12.7.Ion-Exchange Separation -- 12.7.1.Ion Exchangers -- 12.7.2.Ion-Exchange Equilibrium -- 12.7.3.Capacity of Ion Exchangers -- 12.7.4.Regeneration of Ion Exchangers -- 12.8.Filtration -- 12.9.Membrane Separation Techniques -- 12.9.1.Theory of Membrane Separation -- 12.9.2.Retention Coefficient -- 12.9.3.Factors Affecting Membrane Separation -- 12.9.4.Membranes and Their Characteristics -- 12.9.5.Equipment for Membrane Separation -- 12.9.6.Membrane Separation Methods -- 12.10.Crystallization -- 12.11.Precipitation -- 12.12.Lyophilization -- 13.Chromatographic Separations -- 13.1.Introduction -- 13.2.Classification of Chromatographic Methods -- 13.3.Column Chromatography -- 13.3.1.Principle of Separation in Column Chromatography -- 13.4.Chromatographic Parameters -- 13.4.1.Retention Time -- 13.4.2.Retention Volume -- 13.4.3.Relative Retention -- 13.4.4.Column Efficiency -- 13.4.5.Resolution -- 13.4.6.Peak Asymmetry -- 13.4.7.Broadening of Chromatographic Peaks -- 13.4.8.Optimization of Column Performance -- 13.4.9.Applications of Chromatography -- 13.5.Liquid Chromatography -- 13.5.1.Practice of Liquid Chromatography -- 13.6.Adsorption Chromatography -- 13.7.Partition Chromatography -- 13.7.1.Normal Phase Chromatography -- 13.7.2.Reversed Phase Chromatography -- 13.7.3.Hydrophobic Interaction Chromatography -- 13.8.Ion-exchange Chromatography -- 13.8.1.Ion Chromatography -- 13.9.Size-exclusion Chromatography -- 13.10.Affinity Chromatography -- 13.11.High-performance Liquid Chromatography -- 13.11.1.Principle -- 13.11.2.HPLC Instrument -- 13.11.3.Practice of HPLC -- 13.11.4.Applications of HPLC -- 13.11.5.HPLC-mass Spectrometry (HPLC-MS) -- 13.12.Supercritical Fluid Chromatography -- 13.12.1.Supercritical Fluid Solvents and Their Properties -- 13.12.2.SCFC Instrument -- 13.13.Gas Chromatography -- 13.13.1.Principle -- 13.13.2.GC Instrument -- 13.13.3.Hyphenated or Coupled Chromatographic Techniques -- 13.13.4.Practice of GC -- 13.13.5.Qualitative Analysis by Gas Chromatography -- 13.13.6.Quantitative Analysis by Gas Chromatography -- 13.14.Planar Chromatographic Techniques -- 13.14.1.Paper Chromatography -- 13.14.2.Thin Layer Chromatography -- 13.14.3.Two-dimensional Planar Chromatography -- 13.14.4.High-performance Thin Layer Chromatography -- 13.14.5.Applications of Planar Chromatographic Techniques -- 13.14.6.Developments in Planar Chromatographic Techniques -- 14.Electrophoresis and Related Techniques of Separation -- 14.1.Introduction -- 14.2.Electrophoresis -- 14.2.1.Free Solution Electrophoresis -- 14.2.2.Zone Electrophoresis -- 14.2.3.Polyacrylamide Gel Electrophoresis -- 14.2.4.Native Gel Electrophoresis -- 14.2.5.Disc Gel Electrophoresis -- 14.2.6.Sodium Dodecyl Sulphatepolyacrylamide Gel Electrophoresis (SDS-PAGE) -- 14.2.7.Agarose Gel Electrophoresis -- 14.2.8.Parameters Affecting Gel Electrophoretic Separations -- 14.2.9.Detection of Proteins and Nucleic Acids in Electrophoresis Gels -- 14.2.10.Pulsed Field Gel Electrophoresis -- 14.2.11.Applications of Electrophoresis Techniques -- 14.3.Immunoelectrophoresis -- 14.4.Capillary Electrophoresis -- 14.4.1.Micellar Electrokinetic Capillary Chromatography -- 14.4.2.Capillary Gel Electrophoresis -- 14.4.3.Capillary Electrochromatography -- 14.5.Isoelectric Focusing -- 14.6.Two-dimensional Electrophoresis -- 14.7.Isotachophoresis -- 15.Centrifugation -- 15.1.Introduction -- 15.2.Centrifugal Force -- 15.3.Principles of Centrifugal Sedimentation -- 15.4.Centrifuges -- 15.4.1.Rotors -- 15.5.Centrifugation Techniques -- 15.6.Differential Centrifugation -- 15.7.Density Gradient Centrifugation -- 15.7.1.Sample Application and Harvesting Samples from Gradients -- 15.7.2.Density Gradient Centrifugation Techniques -- 15.8.Centrifugal Elutriation -- 15.9.Ultracentrifuge -- 15.9.1.Analytical Ultracentrifuge -- 15.9.2.Applications of Analytical Ultracentrifuge -- 15.9.3.Determination of Molecular Weight of Macromolecules -- 15.9.4.Determination of Purity of Macromolecules -- 15.9.5.Study of Conformation Changes in Macromolecules -- 15.10.Preparative Ultracentrifuge -- 16.Electroanalytical Methods -- 16.1.Introduction -- 16.2.Classification of Electroanalytical Techniques -- 16.3.Conductometry -- 16.3.1.Measurement of Conductance -- 16.3.2.Applications of Conductance Measurements -- 16.4.Conductance Titrations -- 16.4.1.Acid-base Reactions -- 16.4.2.Displacement Titrations -- 16.4.3.Precipitation Titrations -- 16.4.4.Complex-formation Reactions -- 16.4.5.Titrations in Non-aqueous Media -- 16.5.Oscillometric or High-frequency Titrations -- 16.6.Principles of Electrogravimetry and Coulometry -- 16.7.Electrogravimetry -- 16.8.Coulometry -- 16.8.1.Constant Potential Coulometry -- 16.8.2.Constant Current Coulometry -- 16.9.Potentiometry -- 16.9.1.Thermodynamic Significance of Electrode Potentials -- 16.9.2.Indicator Electrodes -- 16.9.3.Reference Electrodes -- 16.9.4.EMF Measurement -- 16.9.5.Standard Weston Cadmium Cell -- 16.10.Applications of EMF Measurements -- 16.10.1.Determination of pH by Glass Electrode -- 16.10.2.pH Titrations -- 16.10.3.Potentiometric Titrations -- 16.11.Ion Selective Electrodes -- 16.11.1.Different Types of Ion Selective Electrodes -- 16.12.Polarography -- 16.12.1.Quantitative Analysis by Polarography -- 16.12.2.Modern Polarographic Techniques -- 16.13.Amperometric Titrations -- 16.13.1.Amperometric Titrations with One Polarizable Indicator Electrode -- 16.13.2.Biamperometric Titrations -- 16.13.3.A Few Important Applications of Amperometry -- 16.13.4.Oxygen Sensor -- 16.13.5.Biosensors -- 17.Thermal Analytical Methods -- 17.1.Introduction -- 17.2.Thermogravimetry -- 17.2.1.TG Instrument -- 17.2.2.Thermogram -- 17.2.3.Applications of Thermogravimetry -- 17.3.Differential Thermal Analysis -- 17.3.1.DTA Instrument -- 17.3.2.DTA Thermogram -- 17.4.Differential Scanning Calorimetry -- 17.4.1.DSC Instrument -- 17.4.2.Applications of DTA and DSC -- 17.5.Thermomechanical Analysis -- 17.5.1.TMA Instrument -- 17.5.2.Applications of TMA -- 17.6.Dynamic Mechanical Analysis -- 17.6.1.DMA Instrument -- 17.6.2.DMA Applications -- 17.7.Evolved Gas Analysis -- 17.7.1.Pyrolysis Gas Chromatograph Instrument -- 18.Radiochemical Methods of Analysis -- 18.1.Introduction -- 18.2.Origin of Radioactivity -- 18.2.1.Decay Modes of Radioactive Isotopes -- 18.2.2.Kinetics of Radioactive Decay Process -- 18.2.3.Units of Radioactivity -- 18.3.Measurement of Radioactivity -- 18.3.1.Detectors Based on Ionization -- 18.3.2.Detectors Based on Photo Effect -- 18.3.3.Detector Based on Chemical Reaction -- 18.4.Amplifiers and Other Electronic Equipment -- 18.5.Pulse Height Analyser -- 18.6.Analytical Applications of Radioisotopes -- 18.6.1.Isotope Dilution Method -- 18.6.2.Activation Analysis -- 18.6.3.Radioimmunoassay -- 18.6.4.Autoradiography -- 19.Surface Analytical Methods -- 19.1.Introduction -- 19.2.Classification of Surface Analytical Methods -- 19.3.Methods Based on Adsorption-desorption of Probe Molecules -- 19.3.1.Physisorption -- 19.3.2.Chemisorption -- 19.4.Vibrational Spectroscopic Techniques for Surface Studies -- 19.4.1.IR Spectroscopy -- 19.4.2.Electron Energy Loss Spectroscopy -- 19.4.3.Reflection-absorption Infrared Spectroscopy -- 19.5.Electronic Spectroscopic Methods -- 19.5.1.Electron Spectroscopy for Chemical Analysis -- 19.5.2.Auger Electron Spectroscopy -- 19.5.3.Ion Scattering Spectrometry -- 19.5.4.Secondary Ion Mass Spectrometry -- 19.6.X-ray Methods -- 19.7.Thermal Methods -- 19.7.1.Temperature-programmed Desorption -- 19.7.2.Temperature-programmed Reduction -- 19.7.3.Desorption Studies by TG, DTA, and DSC."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1163158681>
schema:inLanguage"en"
schema:name"Instrumental methods of analysis"@en
schema:numberOfPages"555"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.