skip to content
Integrated computational materials engineering (ICME) for metals : using multiscale modeling to invigorate engineering design with science Preview this item
ClosePreview this item
Checking...

Integrated computational materials engineering (ICME) for metals : using multiscale modeling to invigorate engineering design with science

Author: Mark F Horstemeyer
Publisher: Hoboken, N.J. : WILEY-TMS, ©2012.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Mark F Horstemeyer
ISBN: 9781118022528 1118022521
OCLC Number: 791679045
Description: xx, 430 pages : illustrations (some color) ; 25 cm
Contents: FOREWORD xiii PREFACE xv ACKNOWLEDGMENTS xix 1 AN INTRODUCTION TO INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING (ICME) 1 1.1 Background / 2 1.2 The Application of Multiscale Materials Modeling via ICME / 2 1.3 History of Multiscale Modeling / 4 1.3.1 Bridging between Scales: A Difference of Disciplines / 6 1.4 ICME for Design / 22 1.4.1 Design Optimization / 23 1.4.2 Metamodeling Approaches / 26 1.4.3 Design with Uncertainty Analysis / 27 1.5 ICME for Manufacturing / 29 1.6 Summary / 29 References / 31 2 MACROSCALE CONTINUUM INTERNAL STATE VARIABLE (ISV) PLASTICITY DAMAGE THEORY AND MULTISTAGE FATIGUE (MSF) 45 2.1 Introduction / 45 2.2 Stress / 46 2.3 Kinematics of Deformation and Strain / 54 2.4 Continuum Theory Constitutive Equations / 58 2.4.1 Thermodynamics of the ISV Constitutive Equations / 62 2.4.2 Kinetics of the ISV Constitutive Equations / 66 2.4.3 Continuum Theory ISV Constitutive Equations with Discrete Structures/Defects / 73 2.4.4 Guidelines for the Development of an ISV / 74 2.5 Multistage Fatigue (MSF) Modeling / 75 2.6 Bridging Strategies for the Macroscale and the Mesoscale / 80 2.6.1 Downscaling: Defi ning the Macroscale Constraints for the Mesoscale Analysis / 80 2.6.2 Upscaling: Using Design of Experiments (DOE) for Mesoscale Analysis / 80 2.7 Experimental Exploration, Calibration, and Validation at the Macroscale / 85 2.8 Summary / 87 References / 88 3 MESOSCALE ANALYSIS: CONTINUUM THEORY METHODS WITH DISCRETE FEATURES/METHODS 98 3.1 Kinematics of Crystal Plasticity / 100 3.2 Kinetics of Crystal Plasticity / 104 3.3 Crystal Orientations and Elasticity / 108 3.4 Upscaling: Bridging the Crystal Level to the Polycrystalline Continuum Level / 110 3.4.1 Upscaling for Plasticity / 111 3.4.2 Upscaling for Damage/Fracture / 119 3.4.3 Upscaling for Fatigue / 120 3.5 Downscaling from Crystal Plasticity to Dislocation Dynamics / 122 3.5.1 Plasticity / 122 3.5.2 Damage / 122 3.5.3 Fatigue / 122 3.6 Experimental Exploration, Calibration, and Validation at the Mesoscale / 123 3.7 Summary / 123 References / 123 4 DISCRETE DISLOCATION DYNAMICS SIMULATIONS 128 4.1 Introduction / 128 4.2 Metal Plasticity Modeling / 129 4.3 Dislocation Mechanics Basics / 131 4.3.1 Geometrical Attributes of Dislocations / 131 4.3.2 Dislocation Motion / 132 4.3.3 Dislocation Motion and Plastic Strain / 134 4.3.4 Dislocations Reactions / 135 4.4 Modeling Discrete Dislocations / 135 4.4.1 Dislocation Equation of Motion / 136 4.4.2 Evaluation of Fdislocation / 137 4.4.3 Evaluation of Fself / 138 4.5 Boundary Conditions / 139 4.6 Upscaling for Plasticity / 140 4.6.1 Upscaling for the Macroscopic Plastic Strain / 140 4.6.2 Upscaling: Bridging the Dislocation Level to the Macroscale Continuum Level Stresses and Strains / 140 4.6.3 Upscaling for Work Hardening / 143 4.7 Downscaling from DD to Atomistics / 143 4.8 Summary / 144 References / 144 5 ATOMISTIC MODELING METHODS 146 5.1 EAM Potentials / 147 5.2 MEAM Potentials / 148 5.3 Upscaling: Bridging the Atomic Level to the Dislocation Density Level and the Continuum Level / 153 5.3.1 Continuum Quantities for Upscaling / 153 5.3.2 Upscaling for Plasticity / 155 5.3.3 Upscaling for Damage / 156 5.3.4 Upscaling for Fatigue / 157 5.3.5 Downscaling from Atomistics to Electronics Structures Calculations / 157 5.4 Summary / 159 References / 159 6 ELECTRONIC STRUCTURE CALCULATIONS 164 6.1 Introduction / 164 6.2 Why Quantum Mechanics? / 165 6.3 Theoretical Background / 166 6.4 Postulates of Quantum Mechanics / 168 6.5 Prior to Density Functional Theory (DFT) / 170 6.6 DFT / 175 6.7 Upscaling: Bridging the Electron Level to the Atom Level / 176 6.7.1 Cohesive Energy / 177 6.7.2 Lattice Parameter / 178 6.7.3 Bulk Moduli / 178 6.7.4 Elastic Constants / 179 6.7.5 Vacancy Formation Energies / 180 6.7.6 Interstitial Defects / 180 6.7.7 Surface Formation Energies / 181 6.7.8 Surface Adsorption Energies / 181 6.7.9 Stacking Fault Energies / 182 6.7.10 GSFE Curve / 183 6.8 Summary / 184 Bibliography / 184 Cited References / 184 Uncited References / 185 7 CASE STUDY: FROM ATOMS TO AUTOS: A REDESIGN OF A CADILLAC CONTROL ARM 187 7.1 Introduction / 187 7.1.1 Material: Cast A356 Aluminum Alloy / 189 7.1.2 Modeling Philosophy / 189 7.2 Macroscale Microstructure Property Internal State Variable (ISV) Plasticity Damage Model / 195 7.2.1 Kinematics of the Macroscale Model / 196 7.2.2 Void Nucleation, Growth, and Coalescence Aspects of the Macroscale Model / 200 7.2.3 Elastic Plastic Aspects of Macroscale Continuum Model / 205 7.2.4 Macroscale Continuum Model Summary / 209 7.3 Bridges 1 and 5: Electronics Structure Calculations: Connections to the Atomic Scale and Macroscale Continuum Level / 211 7.3.1 Atomistic Level Downscaling Requirements / 213 7.4 Bridges 2 and 6: Nanoscale Atomistic Simulations: Connections to the Microscale and Macroscale / 216 7.4.1 Atomistic Simulation Preliminaries / 217 7.4.2 Aluminum Silicon Interface Structure and Model Sensitivity / 218 7.4.3 Aluminum Silicon Interface Debonding / 224 7.4.4 Role of Vacancy-Type Defects / 226 7.4.5 Upscaling: Comparison of Continuum Decohesion Models for the Microscale Simulations / 229 7.5 Bridges 3 and 7: Microscale Finite Element Simulations: Connections to the Mesoscale and Macroscale / 233 7.5.1 Design of Experiment Parameters for Void Crack Nucleation at the Microscale / 236 7.5.2 DOE Methodology / 238 7.5.3 Micromechanical DOE Results Using FEA / 240 7.5.4 Validation Experiments / 244 7.5.5 Bridge 6: From Microscale to Macroscale Modeling: Void/Crack Nucleation / 245 7.5.6 Summary of Bridges Related to the Microscale / 247 7.6 Bridges 4 and 8: Mesoscale 1 Finite Element Simulations: Connections to the Mesoscale 2 and Macroscale / 247 7.6.1 Mesoscale 1 Finite Element Simulation Setup and Results for the Realistic Microstructures / 251 7.6.2 Bridge 8: From Mesoscale 1 to Macroscale Modeling: Pore Coalescence / 258 7.6.3 Summary of Bridges Related to the Mesoscale 1 Finite Element Simulations / 258 7.7 Bridge 9: Mesoscale 2 Finite Element Simulations (Idealized Porosity): Connections to the Macroscale / 259 7.7.1 Mesoscale 2 Finite Element Simulation Setup and Results for the Idealized Porosity / 260 7.7.2 Pore Coalescence Parametric Study / 260 7.7.3 Temperature Effects on Pore Coalescence / 266 7.7.4 Bridge 9: From Mesoscale 2 to Macroscale Modeling: Pore Coalescence / 275 7.7.5 Summary of Bridges Related to Mesoscale 2 Idealized Porosity Simulations / 276 7.8 Bridge 10: Macroscale Material Model: Connections to the Macroscale Finite Element Simulations / 276 7.8.1 Summary of Bridge Information from the Lower Length Scales into the Macroscale Continuum Model / 277 7.8.2 Hierarchical Multiscale Macroscale Continuum ISV Theory: Calibration and Validation / 278 7.8.3 Model Calibration of the Continuum ISV Model / 279 7.8.4 Model Validation of the Macroscale Continuum ISV Model / 286 7.8.5 Summary of Bridges Related to the Macroscale Simulations / 303 7.9 Predictive Modeling of Structural Components for the Case Study of the Cast A356 Aluminum Alloy / 303 7.9.1 Weapons Carrier Analysis / 304 7.9.2 Automotive Control Arm Analysis / 306 7.10 Design Optimization with Uncertainty of the Automotive Control Arm / 310 7.10.1 Conventional Design Optimization Method / 311 7.10.2 Design Optimization Employing Surrogate (Metamodel) Modeling with Probabilistics (Reliability) under Uncertainty with the Macroscale Continuum ISV Model that Included the Hierarchical Multiscale Analysis and Associated Microstructures from the Different Length Scales / 312 7.11 Summary / 327 References / 328 8 CASE STUDY: A MICROSTRUCTURE PROPERTY MULTISTAGE FATIGUE (MSF) ANALYSIS OF A CADILLAC CONTROL ARM 340 8.1 Introduction to the Mechanisms of Fatigue in Cast Alloys / 340 8.2 Macroscale MSF Model / 346 8.2.1 Incubation / 346 8.2.2 MSC Regime / 347 8.3 Macroscale MSF Modeling Bridges (Upscaling and Downscaling) / 350 8.3.1 Bridge 7: Atomistic Simulations for Determining the Crack Driving Force Coeffi cient for the MSC Growth Rate in the Macroscale MSF Model / 352 8.3.2 Bridge 9 Mesoscale Finite Element Simulations for the Nonlocal Plasticity Parameter in the Incubation Equation: Connections to the Macroscale / 354 8.3.3 Bridge 10 Mesoscale Finite Element Simulations for the MSC: Connections to the Macroscale / 363 8.3.4 Bridge 12: Macroscale MSF Model Calibration / 366 8.4 Summary / 373 Bibliography / 374 Cited References / 374 Uncited References / 377 9 CASE STUDY: CONDUCTING A STRUCTURAL SCALE METAL FORMING FINITE ELEMENT ANALYSIS STARTING FROM ELECTRONICS STRUCTURES CALCULATIONS USING ICME TOOLS 379 9.1 Introduction / 379 9.2 Modeling Philosophy / 380 9.3 Bridge 1: Electronics Principles to Atomistic Simulation Connection / 382 9.3.1 Atomistic Model Calibration Using the Modified Embedded Atom Method (MEAM) Potential / 382 9.3.2 Atomistic Model Validation Using the MEAM Potential / 382 9.4 Bridge 2: Atomistic Simulation to Dislocation Density Simulation Connection / 386 9.5 Bridge 3: Dislocation Density to CP Simulation Connection / 391 9.5.1 Model Calibration of Hardening Equations / 391 9.5.2 Model Validation of the Hardening Equations / 396 9.6 Bridge 9: CP to Macroscale Continuum Simulation Connection / 398 9.7 Bridge 12: Macroscale Continuum Model to the Structural Scale Simulation of the Sheet Forming Problem / 402 9.8 Summary / 404 References / 406 10 THE NEAR FUTURE: ICME FOR THE CREATION OF NEW MATERIALS AND STRUCTURES 410 10.1 Integrating Process, Structure, Property, and Performance / 410 10.2 Energy / 417 10.3 Infrastructure / 419 10.4 Transportation / 419 10.5 Nano- and Microstructures/Small Devices / 419 10.6 Summary / 421 References / 422 INDEX 425
Responsibility: by Mark F. Horstemeyer.

Reviews

Editorial reviews

Publisher Synopsis

This book can serve multiple purposes including a graduate-level text-book on multiscale modeling, a one-stop reference for the practicing researcher, and a great starting point for a researcher who Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/791679045> # Integrated computational materials engineering (ICME) for metals : using multiscale modeling to invigorate engineering design with science
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "791679045" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1106913568#Place/hoboken_n_j> ; # Hoboken, N.J.
   schema:about <http://id.worldcat.org/fast/1018157> ; # Metals--Mathematical models
   schema:about <http://id.worldcat.org/fast/1011960> ; # Materials science--Data processing
   schema:about <http://id.worldcat.org/fast/1763130> ; # Multiscale modeling
   schema:about <http://experiment.worldcat.org/entity/work/data/1106913568#Topic/metals_mathematical_models> ; # Metals--Mathematical models
   schema:about <http://experiment.worldcat.org/entity/work/data/1106913568#Topic/metal_products_computer_simulation> ; # Metal products--Computer simulation
   schema:about <http://id.loc.gov/authorities/subjects/sh2010012486> ; # Multiscale modeling
   schema:about <http://experiment.worldcat.org/entity/work/data/1106913568#Topic/materials_science_data_processing> ; # Materials science--Data processing
   schema:about <http://dewey.info/class/620.160151/e23/> ;
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "2012" ;
   schema:creator <http://viaf.org/viaf/250314234> ; # Mark Fredrick Horstemeyer
   schema:datePublished "2012" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1106913568> ;
   schema:inLanguage "en" ;
   schema:name "Integrated computational materials engineering (ICME) for metals : using multiscale modeling to invigorate engineering design with science"@en ;
   schema:productID "791679045" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/791679045#PublicationEvent/hoboken_n_j_wiley_tms_2012> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1106913568#Agent/wiley_tms> ; # WILEY-TMS
   schema:workExample <http://worldcat.org/isbn/9781118022528> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/791679045> ;
    .


Related Entities

<http://id.loc.gov/authorities/subjects/sh2010012486> # Multiscale modeling
    a schema:Intangible ;
   schema:name "Multiscale modeling"@en ;
    .

<http://id.worldcat.org/fast/1011960> # Materials science--Data processing
    a schema:Intangible ;
   schema:name "Materials science--Data processing"@en ;
    .

<http://id.worldcat.org/fast/1018157> # Metals--Mathematical models
    a schema:Intangible ;
   schema:name "Metals--Mathematical models"@en ;
    .

<http://id.worldcat.org/fast/1763130> # Multiscale modeling
    a schema:Intangible ;
   schema:name "Multiscale modeling"@en ;
    .

<http://viaf.org/viaf/250314234> # Mark Fredrick Horstemeyer
    a schema:Person ;
   schema:birthDate "1962" ;
   schema:familyName "Horstemeyer" ;
   schema:givenName "Mark Fredrick" ;
   schema:givenName "Mark F." ;
   schema:name "Mark Fredrick Horstemeyer" ;
    .

<http://worldcat.org/isbn/9781118022528>
    a schema:ProductModel ;
   schema:isbn "1118022521" ;
   schema:isbn "9781118022528" ;
    .

<http://www.worldcat.org/title/-/oclc/791679045>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/791679045> ; # Integrated computational materials engineering (ICME) for metals : using multiscale modeling to invigorate engineering design with science
   schema:dateModified "2017-12-25" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.