skip to content
An introduction to computational learning theory Preview this item
ClosePreview this item
Checking...

An introduction to computational learning theory

Author: Michael J Kearns; Umesh Virkumar Vazirani
Publisher: Cambridge, Mass. : MIT Press, ©1994.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Michael J Kearns; Umesh Virkumar Vazirani
ISBN: 0262111934 9780262111935
OCLC Number: 30476515
Description: xii, 207 pages : illustrations ; 24 cm
Contents: The probably approximately correct learning model --
Occam's razor --
The Vapnik-Chervonenkis dimension --
Weak and strong learning --
Learning in the presence of noise --
Inherent unpredictability --
Reducibility in PAC learning --
Learning finite automata by experimentation --
Appendix: some tools for probabilistic analysis.
Responsibility: Michael J. Kearns, Umesh V. Vazirani.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/30476515>
library:oclcnum"30476515"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"1994"
schema:creator
schema:datePublished"1994"
schema:description"The probably approximately correct learning model -- Occam's razor -- The Vapnik-Chervonenkis dimension -- Weak and strong learning -- Learning in the presence of noise -- Inherent unpredictability -- Reducibility in PAC learning -- Learning finite automata by experimentation -- Appendix: some tools for probabilistic analysis."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/20908898>
schema:inLanguage"en"
schema:name"An introduction to computational learning theory"@en
schema:publication
schema:publisher
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GB9485761>
wdrs:describedby

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.