skip to content
Introduction to mathematical logic Preview this item
ClosePreview this item

Introduction to mathematical logic

Author: Elliott Mendelson
Publisher: Boca Raton : Chapman & Hall/CRC, 2001.
Edition/Format:   Print book : English : 4th ed., 1st CRC-Press reprintView all editions and formats

Covering the basic topics of a solid first course in mathematical logic, this book includes an appendix on second-order logic, a section on set theory with urlements, and a section on the logic that  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Elliott Mendelson
ISBN: 9780412808302 0412808307
OCLC Number: 718438594
Description: 440 p
Contents: The Propositional CalculusPropositional Connectives. Truth TablesTautologiesAdequate Sets of ConnectivesAn Axiom System for the Propositional CalculusIndependence: Many-Valued LogicsOther AxiomatizationsQuantification TheoryQuantifiersFirst-Order Languages and Their InterpretationsFirst-Order TheoriesProperties of First-Order TheoriesAdditional Metatheorems and Derived RulesRule CCompleteness TheoremsFirst-Order Theories with EqualityDefinitions of New Function Letters and Individual ConstantsPrenex Normal FormsIsomorphism of Interpretations. Categoricity of TheoriesGeneralized First-Order Theories. Completeness and DecidabilityElementary Equivalence. Elementary ExtensionsUltrapowers. Non-Standard AnalysisSemantic TreesQuantification Theory Allowing Empty DomainsFormal Number TheoryAn Axiom SystemNumber-Theoretic Functions and RelationsPrimitive Recursive and Recursive FunctionsArithmatization. Goedel NumbersThe Fixed Point Theorem. Goedel's Incompleteness TheoremRecursive Undecidability. Church's TheoremAxiomatic Set TheoryAn Axiom SystemOrdinal NumbersEquinumerousity. Finite and Denumerable Sets.Hartog's Theorem. Initial Ordinals. Ordinal ArithmeticThe Axiom of Choice. The Axiom of RegularityOther Axiomatizations of Set TheoryComputabilityAlgorithms. Turing MachinesDiagramsPartial Recursive Functions. Unsolvable Problems.The Kleene-Mosotovski Hierarchy. Recursively Enumerable SetsOther notions of ComputabilityDecision Problems
Responsibility: Elliott Mendelson.


Editorial reviews

Publisher Synopsis

"Nearly forty years after it was published (1964), Elliot Mendelson's Introduction to Mathematical Logic still remains the best textbook on the principle topics of this subjectI have used Mendelson's Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Introduction to mathematical logic
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "718438594" ;
   library:placeOfPublication <> ;
   library:placeOfPublication <> ; # Boca Raton
   schema:about <> ; # logique mathématique
   schema:bookEdition "4th ed., 1st CRC-Press reprint." ;
   schema:bookFormat bgn:PrintBook ;
   schema:creator <> ; # Elliott Mendelson
   schema:datePublished "2001" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:name "Introduction to mathematical logic" ;
   schema:productID "718438594" ;
   schema:publication <> ;
   schema:publisher <> ; # Chapman & Hall/CRC
   schema:workExample <> ;
   wdrs:describedby <> ;

Related Entities

<> # Chapman & Hall/CRC
    a bgn:Agent ;
   schema:name "Chapman & Hall/CRC" ;

<> # logique mathématique
    a schema:Intangible ;
   schema:name "logique mathématique" ;

<> # Elliott Mendelson
    a schema:Person ;
   schema:familyName "Mendelson" ;
   schema:givenName "Elliott" ;
   schema:name "Elliott Mendelson" ;

    a schema:ProductModel ;
   schema:isbn "0412808307" ;
   schema:isbn "9780412808302" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.